Zhengwei Wang, Jana Mach, Xiuxian Chen, Randolf Menzel
{"title":"摇摆舞招募的蜜蜂期待景观结构。","authors":"Zhengwei Wang, Jana Mach, Xiuxian Chen, Randolf Menzel","doi":"10.1016/j.cub.2025.08.055","DOIUrl":null,"url":null,"abstract":"<p><p>Honeybee foragers explore the environment before they start foraging, following dances, or performing dances. Foragers are therefore familiar with the landscape surrounding the hive during their foraging career. Here, we ask whether dance-recruited honeybees expect the landscape features that the dancer experienced during its outbound foraging flights. If this were the case, the dance-recruited honeybees would behave differently according to whether the landscape features they experienced during their outbound flight matched the expected features. In our experiments, the dance followers (recruits) had explored the environment around the hive, and the dancers flew along an elongated ground structure (a gravel road) running approximately northward from the hive in the outbound condition. The flights of the recruits were recorded by harmonic radar. The recruits were released not only at the hive but also at two remote sites within the explored area, where they faced either a similar north-running gravel road or even grassland. We found that the recruits released from the remote sites performed flights more similar to those of the hive-released bees when they experienced a similar elongated ground structure. This behavior did not result from a spontaneous or learned tendency to follow elongated ground structures as documented by control experiments. We conclude that dance-recruited honeybees expect the salient landscape structures that the dancer experienced, although the dance message includes only vector information.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waggle-dance-recruited honeybees expect landscape structures.\",\"authors\":\"Zhengwei Wang, Jana Mach, Xiuxian Chen, Randolf Menzel\",\"doi\":\"10.1016/j.cub.2025.08.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honeybee foragers explore the environment before they start foraging, following dances, or performing dances. Foragers are therefore familiar with the landscape surrounding the hive during their foraging career. Here, we ask whether dance-recruited honeybees expect the landscape features that the dancer experienced during its outbound foraging flights. If this were the case, the dance-recruited honeybees would behave differently according to whether the landscape features they experienced during their outbound flight matched the expected features. In our experiments, the dance followers (recruits) had explored the environment around the hive, and the dancers flew along an elongated ground structure (a gravel road) running approximately northward from the hive in the outbound condition. The flights of the recruits were recorded by harmonic radar. The recruits were released not only at the hive but also at two remote sites within the explored area, where they faced either a similar north-running gravel road or even grassland. We found that the recruits released from the remote sites performed flights more similar to those of the hive-released bees when they experienced a similar elongated ground structure. This behavior did not result from a spontaneous or learned tendency to follow elongated ground structures as documented by control experiments. We conclude that dance-recruited honeybees expect the salient landscape structures that the dancer experienced, although the dance message includes only vector information.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2025.08.055\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.08.055","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Honeybee foragers explore the environment before they start foraging, following dances, or performing dances. Foragers are therefore familiar with the landscape surrounding the hive during their foraging career. Here, we ask whether dance-recruited honeybees expect the landscape features that the dancer experienced during its outbound foraging flights. If this were the case, the dance-recruited honeybees would behave differently according to whether the landscape features they experienced during their outbound flight matched the expected features. In our experiments, the dance followers (recruits) had explored the environment around the hive, and the dancers flew along an elongated ground structure (a gravel road) running approximately northward from the hive in the outbound condition. The flights of the recruits were recorded by harmonic radar. The recruits were released not only at the hive but also at two remote sites within the explored area, where they faced either a similar north-running gravel road or even grassland. We found that the recruits released from the remote sites performed flights more similar to those of the hive-released bees when they experienced a similar elongated ground structure. This behavior did not result from a spontaneous or learned tendency to follow elongated ground structures as documented by control experiments. We conclude that dance-recruited honeybees expect the salient landscape structures that the dancer experienced, although the dance message includes only vector information.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.