病人来源的肿瘤类器官模拟癌细胞可塑性和克服治疗耐药性。

IF 5.2 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-09-18 DOI:10.3390/cells14181464
Roberto Coppo, Masahiro Inoue
{"title":"病人来源的肿瘤类器官模拟癌细胞可塑性和克服治疗耐药性。","authors":"Roberto Coppo, Masahiro Inoue","doi":"10.3390/cells14181464","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cell plasticity, defined as the ability of tumor cells to reversibly adopt distinct functional states, plays a central role in tumor heterogeneity, therapy resistance, and disease relapse. This process enables cells to enter stem-like, dormant, or drug-tolerant persister states in response to treatment or environmental stress without undergoing genetic changes. Such reversible transitions complicate and limit current treatments. Conventional cancer models often fail to capture the complexities of these adaptive states. In contrast, patient-derived tumor organoids (PDOs), which retain the cellular diversity and structure of primary tumors, provide a unique system for investigating plasticity. This review describes how PDOs can model cellular plasticity, such as the emergence of drug-tolerant persister cells and the interconversion between cancer stem cell states across multiple tumor types. We particularly focused on colorectal cancer organoids, for which research on the mechanism of plasticity is the most advanced. Combined with single-cell analysis, lineage tracing, and functional assays, PDOs can help identify the molecular pathways that control plasticity. Understanding these mechanisms is important for developing therapies to prevent treatment failure and control disease progression.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patient-Derived Tumor Organoids to Model Cancer Cell Plasticity and Overcome Therapeutic Resistance.\",\"authors\":\"Roberto Coppo, Masahiro Inoue\",\"doi\":\"10.3390/cells14181464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer cell plasticity, defined as the ability of tumor cells to reversibly adopt distinct functional states, plays a central role in tumor heterogeneity, therapy resistance, and disease relapse. This process enables cells to enter stem-like, dormant, or drug-tolerant persister states in response to treatment or environmental stress without undergoing genetic changes. Such reversible transitions complicate and limit current treatments. Conventional cancer models often fail to capture the complexities of these adaptive states. In contrast, patient-derived tumor organoids (PDOs), which retain the cellular diversity and structure of primary tumors, provide a unique system for investigating plasticity. This review describes how PDOs can model cellular plasticity, such as the emergence of drug-tolerant persister cells and the interconversion between cancer stem cell states across multiple tumor types. We particularly focused on colorectal cancer organoids, for which research on the mechanism of plasticity is the most advanced. Combined with single-cell analysis, lineage tracing, and functional assays, PDOs can help identify the molecular pathways that control plasticity. Understanding these mechanisms is important for developing therapies to prevent treatment failure and control disease progression.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14181464\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181464","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌细胞可塑性被定义为肿瘤细胞可逆地采用不同功能状态的能力,在肿瘤异质性、治疗耐药性和疾病复发中起着核心作用。这一过程使细胞能够进入干细胞样、休眠或耐药持续状态,以应对治疗或环境压力,而不发生遗传变化。这种可逆的转变使目前的治疗方法复杂化并受到限制。传统的癌症模型往往无法捕捉到这些适应性状态的复杂性。相比之下,患者来源的肿瘤类器官(PDOs)保留了原发肿瘤的细胞多样性和结构,为研究可塑性提供了一个独特的系统。这篇综述描述了PDOs如何模拟细胞可塑性,如耐药持久性细胞的出现和多种肿瘤类型中癌症干细胞状态之间的相互转化。我们特别关注结肠直肠癌类器官,在可塑性机制方面的研究是最先进的。结合单细胞分析、谱系追踪和功能分析,PDOs可以帮助识别控制可塑性的分子途径。了解这些机制对于开发预防治疗失败和控制疾病进展的治疗方法非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patient-Derived Tumor Organoids to Model Cancer Cell Plasticity and Overcome Therapeutic Resistance.

Cancer cell plasticity, defined as the ability of tumor cells to reversibly adopt distinct functional states, plays a central role in tumor heterogeneity, therapy resistance, and disease relapse. This process enables cells to enter stem-like, dormant, or drug-tolerant persister states in response to treatment or environmental stress without undergoing genetic changes. Such reversible transitions complicate and limit current treatments. Conventional cancer models often fail to capture the complexities of these adaptive states. In contrast, patient-derived tumor organoids (PDOs), which retain the cellular diversity and structure of primary tumors, provide a unique system for investigating plasticity. This review describes how PDOs can model cellular plasticity, such as the emergence of drug-tolerant persister cells and the interconversion between cancer stem cell states across multiple tumor types. We particularly focused on colorectal cancer organoids, for which research on the mechanism of plasticity is the most advanced. Combined with single-cell analysis, lineage tracing, and functional assays, PDOs can help identify the molecular pathways that control plasticity. Understanding these mechanisms is important for developing therapies to prevent treatment failure and control disease progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信