Félix Javier Jiménez-Jiménez, Hortensia Alonso-Navarro, Elena García-Martín, Alba Cárcamo-Fonfría, Miguel Angel Martín-Gómez, José A G Agúndez
{"title":"弗里德赖希共济失调的氧化应激和抗氧化治疗。","authors":"Félix Javier Jiménez-Jiménez, Hortensia Alonso-Navarro, Elena García-Martín, Alba Cárcamo-Fonfría, Miguel Angel Martín-Gómez, José A G Agúndez","doi":"10.3390/cells14181406","DOIUrl":null,"url":null,"abstract":"<p><p>The pathogenesis of Friedreich's ataxia (FRDA) remains poorly understood. The most important event is the deficiency of frataxin, a protein related to iron metabolism and, therefore, involved in oxidative stress. Studies on oxidative stress markers and gene expression in FRDA patients have yielded inconclusive results. This is largely due to the limited number of studies, small sample sizes, and methodological differences. A notable finding is the decreased activity of mitochondrial respiratory chain complexes I, II, and III, as well as aconitase, in endomyocardial tissue. In contrast, numerous studies in experimental models of FRDA (characterized by frataxin deficiency) have shown evidence of the involvement of oxidative stress in cellular degeneration. These findings include increased iron concentration, mitochondrial dysfunction (with reduced respiratory chain complex activity and membrane potential), and decreased aconitase activity. Additionally, there is the induction of antioxidant enzymes, reduced glutathione levels, elevated markers of lipoperoxidation, and DNA and carbonyl protein oxidation. The expression of NRF2 is decreased, along with the downregulation of PGC-1α. Therefore, it is plausible that antioxidant treatment may help improve symptoms and slow the progression of FRDA. Among the antioxidant treatments tested in FRDA patients, only omaveloxolone and, to a lesser extent, idebenone (particularly for cardiac hypertrophy) have shown some efficacy. However, many antioxidant drugs have shown the ability to reduce oxidative stress in experimental models of FRDA. Therefore, these drugs may be useful in treating FRDA and are likely candidates for future clinical trials. Future studies investigating oxidative stress and antioxidant therapies in FRDA should adopt a prospective, multicenter, long-term, double-blind design.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469045/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxidative Stress and Antioxidant Therapies in Friedreich's Ataxia.\",\"authors\":\"Félix Javier Jiménez-Jiménez, Hortensia Alonso-Navarro, Elena García-Martín, Alba Cárcamo-Fonfría, Miguel Angel Martín-Gómez, José A G Agúndez\",\"doi\":\"10.3390/cells14181406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pathogenesis of Friedreich's ataxia (FRDA) remains poorly understood. The most important event is the deficiency of frataxin, a protein related to iron metabolism and, therefore, involved in oxidative stress. Studies on oxidative stress markers and gene expression in FRDA patients have yielded inconclusive results. This is largely due to the limited number of studies, small sample sizes, and methodological differences. A notable finding is the decreased activity of mitochondrial respiratory chain complexes I, II, and III, as well as aconitase, in endomyocardial tissue. In contrast, numerous studies in experimental models of FRDA (characterized by frataxin deficiency) have shown evidence of the involvement of oxidative stress in cellular degeneration. These findings include increased iron concentration, mitochondrial dysfunction (with reduced respiratory chain complex activity and membrane potential), and decreased aconitase activity. Additionally, there is the induction of antioxidant enzymes, reduced glutathione levels, elevated markers of lipoperoxidation, and DNA and carbonyl protein oxidation. The expression of NRF2 is decreased, along with the downregulation of PGC-1α. Therefore, it is plausible that antioxidant treatment may help improve symptoms and slow the progression of FRDA. Among the antioxidant treatments tested in FRDA patients, only omaveloxolone and, to a lesser extent, idebenone (particularly for cardiac hypertrophy) have shown some efficacy. However, many antioxidant drugs have shown the ability to reduce oxidative stress in experimental models of FRDA. Therefore, these drugs may be useful in treating FRDA and are likely candidates for future clinical trials. Future studies investigating oxidative stress and antioxidant therapies in FRDA should adopt a prospective, multicenter, long-term, double-blind design.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14181406\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181406","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Oxidative Stress and Antioxidant Therapies in Friedreich's Ataxia.
The pathogenesis of Friedreich's ataxia (FRDA) remains poorly understood. The most important event is the deficiency of frataxin, a protein related to iron metabolism and, therefore, involved in oxidative stress. Studies on oxidative stress markers and gene expression in FRDA patients have yielded inconclusive results. This is largely due to the limited number of studies, small sample sizes, and methodological differences. A notable finding is the decreased activity of mitochondrial respiratory chain complexes I, II, and III, as well as aconitase, in endomyocardial tissue. In contrast, numerous studies in experimental models of FRDA (characterized by frataxin deficiency) have shown evidence of the involvement of oxidative stress in cellular degeneration. These findings include increased iron concentration, mitochondrial dysfunction (with reduced respiratory chain complex activity and membrane potential), and decreased aconitase activity. Additionally, there is the induction of antioxidant enzymes, reduced glutathione levels, elevated markers of lipoperoxidation, and DNA and carbonyl protein oxidation. The expression of NRF2 is decreased, along with the downregulation of PGC-1α. Therefore, it is plausible that antioxidant treatment may help improve symptoms and slow the progression of FRDA. Among the antioxidant treatments tested in FRDA patients, only omaveloxolone and, to a lesser extent, idebenone (particularly for cardiac hypertrophy) have shown some efficacy. However, many antioxidant drugs have shown the ability to reduce oxidative stress in experimental models of FRDA. Therefore, these drugs may be useful in treating FRDA and are likely candidates for future clinical trials. Future studies investigating oxidative stress and antioxidant therapies in FRDA should adopt a prospective, multicenter, long-term, double-blind design.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.