靶向CXCR4/CXCL12轴克服三阴性乳腺癌耐药

IF 5.2 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-09-22 DOI:10.3390/cells14181482
Desh Deepak Singh, Dharmendra Kumar Yadav, Dongyun Shin
{"title":"靶向CXCR4/CXCL12轴克服三阴性乳腺癌耐药","authors":"Desh Deepak Singh, Dharmendra Kumar Yadav, Dongyun Shin","doi":"10.3390/cells14181482","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) remains one of the most aggressive and treatment-resistant forms. TNBC is an aggressive and therapeutically resistant subtype of breast cancer, marked by the absence of estrogen, progesterone, and HER2 receptors. The lack of defined molecular targets significantly limits treatment options and contributes to high recurrence rates. Among the key pathways involved in TNBC progression and resistance, the CXCR4/CXCL12 chemokine axis has emerged as a critical player. CXCR4, a G-protein-coupled receptor, binds specifically to its ligand CXCL12, promoting tumour cell proliferation, metastasis, immune evasion, and stromal remodelling. Its overexpression is frequently associated with poor prognosis, disease progression, and resistance to conventional therapies in TNBC. This review explores how the chemokine receptor type 4 (CXCR4/CXCL12) axis facilitates drug resistance through mechanisms such as epithelial-mesenchymal transition (EMT), cancer stemness, and microenvironmental interactions. Notably, CXCR4 antagonists like plerixafor, balixafortide, and POL5551 have shown encouraging preclinical and clinical results, particularly when combined with chemotherapy or immunotherapy. Additionally, innovative strategies, including radiopharmaceuticals, peptide inhibitors, and nanotechnology-based delivery platforms, offer expanded therapeutic avenues. Despite persistent challenges such as tumour heterogeneity and potential toxicity, growing clinical evidence supports the translational relevance of this axis. This manuscript provides an in-depth analysis of CXCR4/CXCL12-mediated drug resistance in TNBC and evaluates current and emerging therapeutic interventions.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468594/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting the CXCR4/CXCL12 Axis to Overcome Drug Resistance in Triple-Negative Breast Cancer.\",\"authors\":\"Desh Deepak Singh, Dharmendra Kumar Yadav, Dongyun Shin\",\"doi\":\"10.3390/cells14181482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) remains one of the most aggressive and treatment-resistant forms. TNBC is an aggressive and therapeutically resistant subtype of breast cancer, marked by the absence of estrogen, progesterone, and HER2 receptors. The lack of defined molecular targets significantly limits treatment options and contributes to high recurrence rates. Among the key pathways involved in TNBC progression and resistance, the CXCR4/CXCL12 chemokine axis has emerged as a critical player. CXCR4, a G-protein-coupled receptor, binds specifically to its ligand CXCL12, promoting tumour cell proliferation, metastasis, immune evasion, and stromal remodelling. Its overexpression is frequently associated with poor prognosis, disease progression, and resistance to conventional therapies in TNBC. This review explores how the chemokine receptor type 4 (CXCR4/CXCL12) axis facilitates drug resistance through mechanisms such as epithelial-mesenchymal transition (EMT), cancer stemness, and microenvironmental interactions. Notably, CXCR4 antagonists like plerixafor, balixafortide, and POL5551 have shown encouraging preclinical and clinical results, particularly when combined with chemotherapy or immunotherapy. Additionally, innovative strategies, including radiopharmaceuticals, peptide inhibitors, and nanotechnology-based delivery platforms, offer expanded therapeutic avenues. Despite persistent challenges such as tumour heterogeneity and potential toxicity, growing clinical evidence supports the translational relevance of this axis. This manuscript provides an in-depth analysis of CXCR4/CXCL12-mediated drug resistance in TNBC and evaluates current and emerging therapeutic interventions.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14181482\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181482","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三阴性乳腺癌(TNBC)仍然是最具侵袭性和治疗抗性的形式之一。TNBC是一种侵袭性和治疗耐药的乳腺癌亚型,其特征是缺乏雌激素、孕激素和HER2受体。缺乏明确的分子靶点,极大地限制了治疗选择,并导致高复发率。在涉及TNBC进展和耐药的关键途径中,CXCR4/CXCL12趋化因子轴已成为一个关键的参与者。CXCR4是一种g蛋白偶联受体,特异性结合其配体CXCL12,促进肿瘤细胞增殖、转移、免疫逃避和基质重塑。在TNBC中,它的过表达通常与预后不良、疾病进展和对常规治疗的耐药性有关。这篇综述探讨了趋化因子受体4型(CXCR4/CXCL12)轴如何通过上皮-间质转化(EMT)、癌症干细胞和微环境相互作用等机制促进耐药。值得注意的是,CXCR4拮抗剂如plerixafor、balixafortide和POL5551已显示出令人鼓舞的临床前和临床结果,特别是在与化疗或免疫治疗联合使用时。此外,创新策略,包括放射性药物、肽抑制剂和基于纳米技术的递送平台,提供了扩展的治疗途径。尽管存在诸如肿瘤异质性和潜在毒性等持续存在的挑战,但越来越多的临床证据支持该轴的翻译相关性。本文深入分析了TNBC中CXCR4/ cxcl12介导的耐药性,并评估了当前和新兴的治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting the CXCR4/CXCL12 Axis to Overcome Drug Resistance in Triple-Negative Breast Cancer.

Triple-negative breast cancer (TNBC) remains one of the most aggressive and treatment-resistant forms. TNBC is an aggressive and therapeutically resistant subtype of breast cancer, marked by the absence of estrogen, progesterone, and HER2 receptors. The lack of defined molecular targets significantly limits treatment options and contributes to high recurrence rates. Among the key pathways involved in TNBC progression and resistance, the CXCR4/CXCL12 chemokine axis has emerged as a critical player. CXCR4, a G-protein-coupled receptor, binds specifically to its ligand CXCL12, promoting tumour cell proliferation, metastasis, immune evasion, and stromal remodelling. Its overexpression is frequently associated with poor prognosis, disease progression, and resistance to conventional therapies in TNBC. This review explores how the chemokine receptor type 4 (CXCR4/CXCL12) axis facilitates drug resistance through mechanisms such as epithelial-mesenchymal transition (EMT), cancer stemness, and microenvironmental interactions. Notably, CXCR4 antagonists like plerixafor, balixafortide, and POL5551 have shown encouraging preclinical and clinical results, particularly when combined with chemotherapy or immunotherapy. Additionally, innovative strategies, including radiopharmaceuticals, peptide inhibitors, and nanotechnology-based delivery platforms, offer expanded therapeutic avenues. Despite persistent challenges such as tumour heterogeneity and potential toxicity, growing clinical evidence supports the translational relevance of this axis. This manuscript provides an in-depth analysis of CXCR4/CXCL12-mediated drug resistance in TNBC and evaluates current and emerging therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信