多菌株益生菌裂解物减弱TGF-β1诱导的肠纤维化和EMT调节Smad、Akt和WNT/β-Catenin通路

IF 5.2 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-09-12 DOI:10.3390/cells14181432
Alessia Ciafarone, Serena Artone, Valeria Ciummo, Francesca Rosaria Augello, Serena Altamura, Francesca Lombardi, Giovanni Latella, Paola Palumbo, Benedetta Cinque
{"title":"多菌株益生菌裂解物减弱TGF-β1诱导的肠纤维化和EMT调节Smad、Akt和WNT/β-Catenin通路","authors":"Alessia Ciafarone, Serena Artone, Valeria Ciummo, Francesca Rosaria Augello, Serena Altamura, Francesca Lombardi, Giovanni Latella, Paola Palumbo, Benedetta Cinque","doi":"10.3390/cells14181432","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal fibrosis is a common complication of inflammatory bowel diseases (IBD), and, to date, effective and safe antifibrotic drugs are still lacking. Emerging evidence suggests that probiotics may provide novel strategies to counteract fibrotic processes. In this study, we evaluated the anti-fibrotic potential of a multi-strain probiotic formulation, <i>OxxySlab</i><sup>TM</sup>, using in vitro models of intestinal fibrosis and epithelial-to-mesenchymal transition (EMT). Human intestinal fibroblasts (CCD-18Co cell line) and epithelial cells (Caco-2 cell line, IECs) were stimulated with transforming growth factor-β1 (TGF-β1) to induce fibrotic and EMT phenotypes, respectively. Treatment with <i>OxxySlab</i> modulated cell proliferation and fibrosis-related markers, which we assessed through CCK-8 assay, Western blotting, and immunofluorescence. The probiotic lysate inhibited both canonical and non-canonical TGF-β1 signaling pathways, and it also reduced TGF-β1 gene expression in activated myofibroblasts, as shown by RT-qPCR. Furthermore, probiotic treatment reversed EMT features by restoring epithelial markers and downregulating mesenchymal markers. These findings highlight the beneficial effects of the multi-strain probiotic formulation as an adjunctive therapeutic agent targeting key pathways involved in intestinal fibrosis.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468314/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Strain Probiotic Lysate Attenuates TGF-β1-Induced Intestinal Fibrosis and EMT Modulating Smad, Akt, and WNT/β-Catenin Pathways.\",\"authors\":\"Alessia Ciafarone, Serena Artone, Valeria Ciummo, Francesca Rosaria Augello, Serena Altamura, Francesca Lombardi, Giovanni Latella, Paola Palumbo, Benedetta Cinque\",\"doi\":\"10.3390/cells14181432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intestinal fibrosis is a common complication of inflammatory bowel diseases (IBD), and, to date, effective and safe antifibrotic drugs are still lacking. Emerging evidence suggests that probiotics may provide novel strategies to counteract fibrotic processes. In this study, we evaluated the anti-fibrotic potential of a multi-strain probiotic formulation, <i>OxxySlab</i><sup>TM</sup>, using in vitro models of intestinal fibrosis and epithelial-to-mesenchymal transition (EMT). Human intestinal fibroblasts (CCD-18Co cell line) and epithelial cells (Caco-2 cell line, IECs) were stimulated with transforming growth factor-β1 (TGF-β1) to induce fibrotic and EMT phenotypes, respectively. Treatment with <i>OxxySlab</i> modulated cell proliferation and fibrosis-related markers, which we assessed through CCK-8 assay, Western blotting, and immunofluorescence. The probiotic lysate inhibited both canonical and non-canonical TGF-β1 signaling pathways, and it also reduced TGF-β1 gene expression in activated myofibroblasts, as shown by RT-qPCR. Furthermore, probiotic treatment reversed EMT features by restoring epithelial markers and downregulating mesenchymal markers. These findings highlight the beneficial effects of the multi-strain probiotic formulation as an adjunctive therapeutic agent targeting key pathways involved in intestinal fibrosis.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468314/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14181432\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181432","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肠纤维化是炎症性肠病(IBD)的常见并发症,迄今为止,有效和安全的抗纤维化药物仍然缺乏。新出现的证据表明,益生菌可能提供对抗纤维化过程的新策略。在这项研究中,我们利用肠道纤维化和上皮-间质转化(EMT)的体外模型,评估了多菌株益生菌制剂OxxySlabTM的抗纤维化潜力。用转化生长因子-β1 (TGF-β1)刺激人肠成纤维细胞(cd - 18co细胞系)和上皮细胞(Caco-2细胞系,IECs),分别诱导成纤维细胞和EMT表型。OxxySlab处理可调节细胞增殖和纤维化相关标志物,我们通过CCK-8测定、Western blotting和免疫荧光进行评估。RT-qPCR结果显示,益生菌裂解液抑制了典型和非典型TGF-β1信号通路,并降低了活化的肌成纤维细胞中TGF-β1基因的表达。此外,益生菌治疗通过恢复上皮标记和下调间质标记来逆转EMT特征。这些发现强调了多菌株益生菌制剂作为辅助治疗剂针对肠道纤维化的关键途径的有益作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Strain Probiotic Lysate Attenuates TGF-β1-Induced Intestinal Fibrosis and EMT Modulating Smad, Akt, and WNT/β-Catenin Pathways.

Intestinal fibrosis is a common complication of inflammatory bowel diseases (IBD), and, to date, effective and safe antifibrotic drugs are still lacking. Emerging evidence suggests that probiotics may provide novel strategies to counteract fibrotic processes. In this study, we evaluated the anti-fibrotic potential of a multi-strain probiotic formulation, OxxySlabTM, using in vitro models of intestinal fibrosis and epithelial-to-mesenchymal transition (EMT). Human intestinal fibroblasts (CCD-18Co cell line) and epithelial cells (Caco-2 cell line, IECs) were stimulated with transforming growth factor-β1 (TGF-β1) to induce fibrotic and EMT phenotypes, respectively. Treatment with OxxySlab modulated cell proliferation and fibrosis-related markers, which we assessed through CCK-8 assay, Western blotting, and immunofluorescence. The probiotic lysate inhibited both canonical and non-canonical TGF-β1 signaling pathways, and it also reduced TGF-β1 gene expression in activated myofibroblasts, as shown by RT-qPCR. Furthermore, probiotic treatment reversed EMT features by restoring epithelial markers and downregulating mesenchymal markers. These findings highlight the beneficial effects of the multi-strain probiotic formulation as an adjunctive therapeutic agent targeting key pathways involved in intestinal fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信