Jianan Chen, Qiong Wu, Anders E Berglund, Robert J Macaulay, James J Mulé, Arnold B Etame
{"title":"胶质母细胞瘤中的肿瘤相关巨噬细胞:肿瘤进展机制和治疗策略。","authors":"Jianan Chen, Qiong Wu, Anders E Berglund, Robert J Macaulay, James J Mulé, Arnold B Etame","doi":"10.3390/cells14181458","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is an aggressive brain tumor with a highly immunosuppressive microenvironment that promotes tumor progression and therapy resistance. Tumor-associated macrophages (TAMs), comprising up to 50% of the tumor mass, are recruited via chemokine axes such as CCL2/CCR2, CX3CL1/CX3CR1, and CXCL12/CXCR4 and adopt an M2-like immunosuppressive phenotype, facilitating immune escape and angiogenesis. Key signaling pathways, including CSF1R, STAT3, NF-κB, PI3K/Akt, and HIF-1α, regulate TAM function, making them promising therapeutic targets. Strategies such as TAM depletion, reprogramming, and immune checkpoint blockade (PD-1/PD-L1, and CD47-SIRPα) have shown potential in preclinical models. Emerging approaches, including CAR-macrophage (CAR-M) therapy, nanotechnology-based drug delivery, and exosome-mediated modulation, offer new avenues for intervention. However, clinical translation remains challenging due to GBM's heterogeneity and adaptive resistance mechanisms. Future research should integrate multi-omics profiling and AI-driven drug discovery to refine TAM-targeted therapies and improve patient outcomes. This review provides a comprehensive analysis of TAM-mediated immune regulation in GBM and explores evolving therapeutic strategies aimed at overcoming its treatment barriers.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468907/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor-Associated Macrophages in Glioblastoma: Mechanisms of Tumor Progression and Therapeutic Strategies.\",\"authors\":\"Jianan Chen, Qiong Wu, Anders E Berglund, Robert J Macaulay, James J Mulé, Arnold B Etame\",\"doi\":\"10.3390/cells14181458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) is an aggressive brain tumor with a highly immunosuppressive microenvironment that promotes tumor progression and therapy resistance. Tumor-associated macrophages (TAMs), comprising up to 50% of the tumor mass, are recruited via chemokine axes such as CCL2/CCR2, CX3CL1/CX3CR1, and CXCL12/CXCR4 and adopt an M2-like immunosuppressive phenotype, facilitating immune escape and angiogenesis. Key signaling pathways, including CSF1R, STAT3, NF-κB, PI3K/Akt, and HIF-1α, regulate TAM function, making them promising therapeutic targets. Strategies such as TAM depletion, reprogramming, and immune checkpoint blockade (PD-1/PD-L1, and CD47-SIRPα) have shown potential in preclinical models. Emerging approaches, including CAR-macrophage (CAR-M) therapy, nanotechnology-based drug delivery, and exosome-mediated modulation, offer new avenues for intervention. However, clinical translation remains challenging due to GBM's heterogeneity and adaptive resistance mechanisms. Future research should integrate multi-omics profiling and AI-driven drug discovery to refine TAM-targeted therapies and improve patient outcomes. This review provides a comprehensive analysis of TAM-mediated immune regulation in GBM and explores evolving therapeutic strategies aimed at overcoming its treatment barriers.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14181458\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181458","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Tumor-Associated Macrophages in Glioblastoma: Mechanisms of Tumor Progression and Therapeutic Strategies.
Glioblastoma (GBM) is an aggressive brain tumor with a highly immunosuppressive microenvironment that promotes tumor progression and therapy resistance. Tumor-associated macrophages (TAMs), comprising up to 50% of the tumor mass, are recruited via chemokine axes such as CCL2/CCR2, CX3CL1/CX3CR1, and CXCL12/CXCR4 and adopt an M2-like immunosuppressive phenotype, facilitating immune escape and angiogenesis. Key signaling pathways, including CSF1R, STAT3, NF-κB, PI3K/Akt, and HIF-1α, regulate TAM function, making them promising therapeutic targets. Strategies such as TAM depletion, reprogramming, and immune checkpoint blockade (PD-1/PD-L1, and CD47-SIRPα) have shown potential in preclinical models. Emerging approaches, including CAR-macrophage (CAR-M) therapy, nanotechnology-based drug delivery, and exosome-mediated modulation, offer new avenues for intervention. However, clinical translation remains challenging due to GBM's heterogeneity and adaptive resistance mechanisms. Future research should integrate multi-omics profiling and AI-driven drug discovery to refine TAM-targeted therapies and improve patient outcomes. This review provides a comprehensive analysis of TAM-mediated immune regulation in GBM and explores evolving therapeutic strategies aimed at overcoming its treatment barriers.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.