Mirza Masroor Ali Beg, Mohammad Aslam, Asma Ayaz, Muhammad Saeed Akhtar, Wajid Zaman
{"title":"非小细胞肺癌细胞免疫治疗的进展:树突状细胞、t细胞和NK细胞疫苗的研究进展","authors":"Mirza Masroor Ali Beg, Mohammad Aslam, Asma Ayaz, Muhammad Saeed Akhtar, Wajid Zaman","doi":"10.3390/cells14181453","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, cellular immunotherapy has emerged as a transformative strategy for non-small cell lung cancer (NSCLC), with dendritic-cell (DC) vaccines, T-cell vaccines, and natural killer (NK)-cell therapies demonstrating distinct mechanisms and clinical potential. DC vaccines capitalize on antigen presentation to prime tumor-specific T-cell responses, showing excellent safety profiles limited mainly to injection-site reactions and flu-like symptoms. While monotherapy has shown limited efficacy, combinations with checkpoint inhibitors or chemotherapy enhance immune activation and survival outcomes. Recent innovations, including neoantigen-loaded, mRNA-electroporated, and exosome-pulsed DCs, demonstrate improved immunogenicity and personalized approaches. T-cell vaccines, designed to activate cytotoxic CD8+ T-cell responses, have been tested across multiple platforms, including peptide-based (MAGE-A3), viral vector (TG4010/MUC1), and mRNA (CV9201/92) formulations. While the phase III MAGRIT trial presented no disease-free survival (DFS) benefit with adjuvant MAGE-A3 vaccination, the TG4010 vaccine improved progression-free survival (PFS; HR 0.66) and overall survival (OS; HR 0.67) in MUC1-positive NSCLC when combined with chemotherapy. Current strategies focus on personalized neoantigen vaccines and KRAS-targeted approaches (e.g., ELI-002), with ongoing phase III trials evaluating their potential in resectable NSCLC. NK-cell therapies have also shown promise, with early trials establishing the feasibility of autologous and allogeneic infusions, while engineered CAR-NK cells enhance tumor-specific targeting. Combination strategies with checkpoint inhibitors significantly improve response rates and PFS, revealing synergies between innate and adaptive immunity. Recent advances include cytokine-enhanced, memory-like NK cells to overcome immunosuppression and \"off-the-shelf\" products for broader clinical use. Together, these cellular immunotherapies represent a versatile and evolving frontier in NSCLC treatment, with ongoing research optimizing combinations, delivery platforms, and patient selection to maximize therapeutic benefit.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 18","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines.\",\"authors\":\"Mirza Masroor Ali Beg, Mohammad Aslam, Asma Ayaz, Muhammad Saeed Akhtar, Wajid Zaman\",\"doi\":\"10.3390/cells14181453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, cellular immunotherapy has emerged as a transformative strategy for non-small cell lung cancer (NSCLC), with dendritic-cell (DC) vaccines, T-cell vaccines, and natural killer (NK)-cell therapies demonstrating distinct mechanisms and clinical potential. DC vaccines capitalize on antigen presentation to prime tumor-specific T-cell responses, showing excellent safety profiles limited mainly to injection-site reactions and flu-like symptoms. While monotherapy has shown limited efficacy, combinations with checkpoint inhibitors or chemotherapy enhance immune activation and survival outcomes. Recent innovations, including neoantigen-loaded, mRNA-electroporated, and exosome-pulsed DCs, demonstrate improved immunogenicity and personalized approaches. T-cell vaccines, designed to activate cytotoxic CD8+ T-cell responses, have been tested across multiple platforms, including peptide-based (MAGE-A3), viral vector (TG4010/MUC1), and mRNA (CV9201/92) formulations. While the phase III MAGRIT trial presented no disease-free survival (DFS) benefit with adjuvant MAGE-A3 vaccination, the TG4010 vaccine improved progression-free survival (PFS; HR 0.66) and overall survival (OS; HR 0.67) in MUC1-positive NSCLC when combined with chemotherapy. Current strategies focus on personalized neoantigen vaccines and KRAS-targeted approaches (e.g., ELI-002), with ongoing phase III trials evaluating their potential in resectable NSCLC. NK-cell therapies have also shown promise, with early trials establishing the feasibility of autologous and allogeneic infusions, while engineered CAR-NK cells enhance tumor-specific targeting. Combination strategies with checkpoint inhibitors significantly improve response rates and PFS, revealing synergies between innate and adaptive immunity. Recent advances include cytokine-enhanced, memory-like NK cells to overcome immunosuppression and \\\"off-the-shelf\\\" products for broader clinical use. Together, these cellular immunotherapies represent a versatile and evolving frontier in NSCLC treatment, with ongoing research optimizing combinations, delivery platforms, and patient selection to maximize therapeutic benefit.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14181453\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14181453","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines.
Over the past decade, cellular immunotherapy has emerged as a transformative strategy for non-small cell lung cancer (NSCLC), with dendritic-cell (DC) vaccines, T-cell vaccines, and natural killer (NK)-cell therapies demonstrating distinct mechanisms and clinical potential. DC vaccines capitalize on antigen presentation to prime tumor-specific T-cell responses, showing excellent safety profiles limited mainly to injection-site reactions and flu-like symptoms. While monotherapy has shown limited efficacy, combinations with checkpoint inhibitors or chemotherapy enhance immune activation and survival outcomes. Recent innovations, including neoantigen-loaded, mRNA-electroporated, and exosome-pulsed DCs, demonstrate improved immunogenicity and personalized approaches. T-cell vaccines, designed to activate cytotoxic CD8+ T-cell responses, have been tested across multiple platforms, including peptide-based (MAGE-A3), viral vector (TG4010/MUC1), and mRNA (CV9201/92) formulations. While the phase III MAGRIT trial presented no disease-free survival (DFS) benefit with adjuvant MAGE-A3 vaccination, the TG4010 vaccine improved progression-free survival (PFS; HR 0.66) and overall survival (OS; HR 0.67) in MUC1-positive NSCLC when combined with chemotherapy. Current strategies focus on personalized neoantigen vaccines and KRAS-targeted approaches (e.g., ELI-002), with ongoing phase III trials evaluating their potential in resectable NSCLC. NK-cell therapies have also shown promise, with early trials establishing the feasibility of autologous and allogeneic infusions, while engineered CAR-NK cells enhance tumor-specific targeting. Combination strategies with checkpoint inhibitors significantly improve response rates and PFS, revealing synergies between innate and adaptive immunity. Recent advances include cytokine-enhanced, memory-like NK cells to overcome immunosuppression and "off-the-shelf" products for broader clinical use. Together, these cellular immunotherapies represent a versatile and evolving frontier in NSCLC treatment, with ongoing research optimizing combinations, delivery platforms, and patient selection to maximize therapeutic benefit.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.