生物代理视觉交流的概念:用生物类似物架起群体智能的桥梁。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Bryan Starbuck, Hanlong Li, Bryan Cochran, Marc Weissburg, Bert Bras
{"title":"生物代理视觉交流的概念:用生物类似物架起群体智能的桥梁。","authors":"Bryan Starbuck, Hanlong Li, Bryan Cochran, Marc Weissburg, Bert Bras","doi":"10.3390/biomimetics10090605","DOIUrl":null,"url":null,"abstract":"<p><p>Biological swarms communicate through decentralized, adaptive behaviors shaped by local interactions, selective attention, and symbolic signaling. These principles of animal communication enable robust coordination without centralized control or persistent connectivity. This work presents a proof of concept that identifies, evaluates, and translates biological communication strategies into a generative visual language for unmanned aerial vehicle (UAV) swarm agents operating in radio-frequency (RF)-denied environments. Drawing from natural exemplars such as bee waggle dancing, white-tailed deer flagging, and peacock feather displays, we construct a configuration space that encodes visual messages through trajectories and LED patterns. A large language model (LLM), preconditioned using retrieval-augmented generation (RAG), serves as a generative translation layer that interprets perception data and produces symbolic UAV responses. Five test cases evaluate the system's ability to preserve and adapt signal meaning through within-modality fidelity (maintaining symbolic structure in the same modality) and cross-modal translation (transferring meaning across motion and light). Covariance and eigenvalue-decomposition analysis demonstrate that this bio-agentic approach supports clear, expressive, and decentralized communication, with motion-based signaling achieving near-perfect clarity and expressiveness (0.992, 1.000), while LED-only and multi-signal cases showed partial success, maintaining high expressiveness (~1.000) but with much lower clarity (≤0.298).</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467162/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Concept for Bio-Agentic Visual Communication: Bridging Swarm Intelligence with Biological Analogues.\",\"authors\":\"Bryan Starbuck, Hanlong Li, Bryan Cochran, Marc Weissburg, Bert Bras\",\"doi\":\"10.3390/biomimetics10090605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological swarms communicate through decentralized, adaptive behaviors shaped by local interactions, selective attention, and symbolic signaling. These principles of animal communication enable robust coordination without centralized control or persistent connectivity. This work presents a proof of concept that identifies, evaluates, and translates biological communication strategies into a generative visual language for unmanned aerial vehicle (UAV) swarm agents operating in radio-frequency (RF)-denied environments. Drawing from natural exemplars such as bee waggle dancing, white-tailed deer flagging, and peacock feather displays, we construct a configuration space that encodes visual messages through trajectories and LED patterns. A large language model (LLM), preconditioned using retrieval-augmented generation (RAG), serves as a generative translation layer that interprets perception data and produces symbolic UAV responses. Five test cases evaluate the system's ability to preserve and adapt signal meaning through within-modality fidelity (maintaining symbolic structure in the same modality) and cross-modal translation (transferring meaning across motion and light). Covariance and eigenvalue-decomposition analysis demonstrate that this bio-agentic approach supports clear, expressive, and decentralized communication, with motion-based signaling achieving near-perfect clarity and expressiveness (0.992, 1.000), while LED-only and multi-signal cases showed partial success, maintaining high expressiveness (~1.000) but with much lower clarity (≤0.298).</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090605\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090605","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物群体通过分散的、适应性的行为进行交流,这些行为由局部相互作用、选择性注意和符号信号形成。动物交流的这些原则使它们能够在没有集中控制或持久连接的情况下进行强大的协调。这项工作提出了一个概念验证,用于识别、评估和将生物通信策略转化为在射频(RF)拒绝环境中操作的无人机(UAV)群体代理的生成视觉语言。从蜜蜂摇摆舞、白尾鹿和孔雀羽毛展示等自然例子中,我们构建了一个通过轨迹和LED模式编码视觉信息的配置空间。一个大型语言模型(LLM),使用检索增强生成(RAG)进行预处理,作为一个生成翻译层,解释感知数据并产生符号无人机响应。五个测试用例评估了系统通过模态内保真度(保持相同模态的符号结构)和跨模态翻译(跨运动和光传递意义)来保存和适应信号意义的能力。协方差和特征值分解分析表明,这种生物代理方法支持清晰、表达和分散的通信,基于动作的信号获得了近乎完美的清晰度和表达性(0.992,1.000),而led和多信号情况显示部分成功,保持了高表达性(~1.000),但清晰度低得多(≤0.298)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Concept for Bio-Agentic Visual Communication: Bridging Swarm Intelligence with Biological Analogues.

A Concept for Bio-Agentic Visual Communication: Bridging Swarm Intelligence with Biological Analogues.

A Concept for Bio-Agentic Visual Communication: Bridging Swarm Intelligence with Biological Analogues.

A Concept for Bio-Agentic Visual Communication: Bridging Swarm Intelligence with Biological Analogues.

Biological swarms communicate through decentralized, adaptive behaviors shaped by local interactions, selective attention, and symbolic signaling. These principles of animal communication enable robust coordination without centralized control or persistent connectivity. This work presents a proof of concept that identifies, evaluates, and translates biological communication strategies into a generative visual language for unmanned aerial vehicle (UAV) swarm agents operating in radio-frequency (RF)-denied environments. Drawing from natural exemplars such as bee waggle dancing, white-tailed deer flagging, and peacock feather displays, we construct a configuration space that encodes visual messages through trajectories and LED patterns. A large language model (LLM), preconditioned using retrieval-augmented generation (RAG), serves as a generative translation layer that interprets perception data and produces symbolic UAV responses. Five test cases evaluate the system's ability to preserve and adapt signal meaning through within-modality fidelity (maintaining symbolic structure in the same modality) and cross-modal translation (transferring meaning across motion and light). Covariance and eigenvalue-decomposition analysis demonstrate that this bio-agentic approach supports clear, expressive, and decentralized communication, with motion-based signaling achieving near-perfect clarity and expressiveness (0.992, 1.000), while LED-only and multi-signal cases showed partial success, maintaining high expressiveness (~1.000) but with much lower clarity (≤0.298).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信