{"title":"IDP-Head:用于小鼠显微图像中类器官检测的交互式双感知架构。","authors":"Yuhang Yang, Changyuan Fan, Xi Zhou, Peiyang Wei","doi":"10.3390/biomimetics10090614","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread application of organoids in disease modeling and drug development is significantly constrained by challenges in automated quantitative analysis. In bright-field microscopy images, organoids exhibit complex characteristics, including irregular morphology, blurred boundaries, and substantial scale variations, largely stemming from their dynamic self-organization that mimics in vivo tissue development. Existing convolutional neural network-based methods are limited by fixed receptive fields and insufficient modeling of inter-channel relationships, making them inadequate for detecting such evolving biological structures. To address these challenges, we propose a novel detection head, termed Interactive Dual-Perception Head (IDP-Head), inspired by hierarchical perception mechanisms in the biological visual cortex. Integrated into the RTMDet framework, IDP-Head comprises two bio-inspired components: a Large-Kernel Global Perception Module (LGPM) to capture global morphological dependencies, analogous to the wide receptive fields of cortical neurons, and a Progressive Channel Synergy Module (PCSM) that models inter-channel semantic collaboration, echoing the integrative processing of multi-channel stimuli in neural systems. Additionally, we construct a new organoid detection dataset to mitigate the scarcity of annotated data. Extensive experiments on both our dataset and public benchmarks demonstrate that IDP-Head achieves a 5-percentage-point improvement in mean Average Precision (mAP) over the baseline model, offering a biologically inspired and effective solution for high-fidelity organoid detection.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467187/pdf/","citationCount":"0","resultStr":"{\"title\":\"IDP-Head: An Interactive Dual-Perception Architecture for Organoid Detection in Mouse Microscopic Images.\",\"authors\":\"Yuhang Yang, Changyuan Fan, Xi Zhou, Peiyang Wei\",\"doi\":\"10.3390/biomimetics10090614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread application of organoids in disease modeling and drug development is significantly constrained by challenges in automated quantitative analysis. In bright-field microscopy images, organoids exhibit complex characteristics, including irregular morphology, blurred boundaries, and substantial scale variations, largely stemming from their dynamic self-organization that mimics in vivo tissue development. Existing convolutional neural network-based methods are limited by fixed receptive fields and insufficient modeling of inter-channel relationships, making them inadequate for detecting such evolving biological structures. To address these challenges, we propose a novel detection head, termed Interactive Dual-Perception Head (IDP-Head), inspired by hierarchical perception mechanisms in the biological visual cortex. Integrated into the RTMDet framework, IDP-Head comprises two bio-inspired components: a Large-Kernel Global Perception Module (LGPM) to capture global morphological dependencies, analogous to the wide receptive fields of cortical neurons, and a Progressive Channel Synergy Module (PCSM) that models inter-channel semantic collaboration, echoing the integrative processing of multi-channel stimuli in neural systems. Additionally, we construct a new organoid detection dataset to mitigate the scarcity of annotated data. Extensive experiments on both our dataset and public benchmarks demonstrate that IDP-Head achieves a 5-percentage-point improvement in mean Average Precision (mAP) over the baseline model, offering a biologically inspired and effective solution for high-fidelity organoid detection.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090614\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090614","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
IDP-Head: An Interactive Dual-Perception Architecture for Organoid Detection in Mouse Microscopic Images.
The widespread application of organoids in disease modeling and drug development is significantly constrained by challenges in automated quantitative analysis. In bright-field microscopy images, organoids exhibit complex characteristics, including irregular morphology, blurred boundaries, and substantial scale variations, largely stemming from their dynamic self-organization that mimics in vivo tissue development. Existing convolutional neural network-based methods are limited by fixed receptive fields and insufficient modeling of inter-channel relationships, making them inadequate for detecting such evolving biological structures. To address these challenges, we propose a novel detection head, termed Interactive Dual-Perception Head (IDP-Head), inspired by hierarchical perception mechanisms in the biological visual cortex. Integrated into the RTMDet framework, IDP-Head comprises two bio-inspired components: a Large-Kernel Global Perception Module (LGPM) to capture global morphological dependencies, analogous to the wide receptive fields of cortical neurons, and a Progressive Channel Synergy Module (PCSM) that models inter-channel semantic collaboration, echoing the integrative processing of multi-channel stimuli in neural systems. Additionally, we construct a new organoid detection dataset to mitigate the scarcity of annotated data. Extensive experiments on both our dataset and public benchmarks demonstrate that IDP-Head achieves a 5-percentage-point improvement in mean Average Precision (mAP) over the baseline model, offering a biologically inspired and effective solution for high-fidelity organoid detection.