YuLong Zhang, Jianfeng Wang, Xiaoyan Zhang, Bin Wang
{"title":"ACPOA:一种全局优化和多级阈值分割的自适应协同鹈鹕优化算法。","authors":"YuLong Zhang, Jianfeng Wang, Xiaoyan Zhang, Bin Wang","doi":"10.3390/biomimetics10090596","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-threshold image segmentation plays an irreplaceable role in extracting discriminative structural information from complex images. It is one of the core technologies for achieving accurate target detection and regional analysis, and its segmentation accuracy directly affects the analysis quality and decision reliability in key fields such as medical imaging, remote sensing interpretation, and industrial inspection. However, most existing image segmentation algorithms suffer from slow convergence speeds and low solution accuracy. Therefore, this paper proposes an Adaptive Cooperative Pelican Optimization Algorithm (ACPOA), an improved version of the Pelican Optimization Algorithm (POA), and applies it to global optimization and multilevel threshold image segmentation tasks. ACPOA integrates three innovative strategies: the elite pool mutation strategy guides the population toward high-quality regions by constructing an elite pool composed of the three individuals with the best fitness, effectively preventing the premature loss of population diversity; the adaptive cooperative mechanism enhances search efficiency in high-dimensional spaces by dynamically allocating subgroups and dimensions and performing specialized updates to achieve division of labor and global information sharing; and the hybrid boundary handling technique adopts a probabilistic hybrid approach to deal with boundary violations, balancing exploitation, exploration, and diversity while retaining more useful search information. Comparative experiments with eight advanced algorithms on the CEC2017 and CEC2022 benchmark test suites validate the superior optimization performance of ACPOA. Moreover, when applied to multilevel threshold image segmentation tasks, ACPOA demonstrates better accuracy, stability, and efficiency in solving practical problems, providing an effective solution for complex optimization challenges.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467984/pdf/","citationCount":"0","resultStr":"{\"title\":\"ACPOA: An Adaptive Cooperative Pelican Optimization Algorithm for Global Optimization and Multilevel Thresholding Image Segmentation.\",\"authors\":\"YuLong Zhang, Jianfeng Wang, Xiaoyan Zhang, Bin Wang\",\"doi\":\"10.3390/biomimetics10090596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-threshold image segmentation plays an irreplaceable role in extracting discriminative structural information from complex images. It is one of the core technologies for achieving accurate target detection and regional analysis, and its segmentation accuracy directly affects the analysis quality and decision reliability in key fields such as medical imaging, remote sensing interpretation, and industrial inspection. However, most existing image segmentation algorithms suffer from slow convergence speeds and low solution accuracy. Therefore, this paper proposes an Adaptive Cooperative Pelican Optimization Algorithm (ACPOA), an improved version of the Pelican Optimization Algorithm (POA), and applies it to global optimization and multilevel threshold image segmentation tasks. ACPOA integrates three innovative strategies: the elite pool mutation strategy guides the population toward high-quality regions by constructing an elite pool composed of the three individuals with the best fitness, effectively preventing the premature loss of population diversity; the adaptive cooperative mechanism enhances search efficiency in high-dimensional spaces by dynamically allocating subgroups and dimensions and performing specialized updates to achieve division of labor and global information sharing; and the hybrid boundary handling technique adopts a probabilistic hybrid approach to deal with boundary violations, balancing exploitation, exploration, and diversity while retaining more useful search information. Comparative experiments with eight advanced algorithms on the CEC2017 and CEC2022 benchmark test suites validate the superior optimization performance of ACPOA. Moreover, when applied to multilevel threshold image segmentation tasks, ACPOA demonstrates better accuracy, stability, and efficiency in solving practical problems, providing an effective solution for complex optimization challenges.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090596\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090596","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
ACPOA: An Adaptive Cooperative Pelican Optimization Algorithm for Global Optimization and Multilevel Thresholding Image Segmentation.
Multi-threshold image segmentation plays an irreplaceable role in extracting discriminative structural information from complex images. It is one of the core technologies for achieving accurate target detection and regional analysis, and its segmentation accuracy directly affects the analysis quality and decision reliability in key fields such as medical imaging, remote sensing interpretation, and industrial inspection. However, most existing image segmentation algorithms suffer from slow convergence speeds and low solution accuracy. Therefore, this paper proposes an Adaptive Cooperative Pelican Optimization Algorithm (ACPOA), an improved version of the Pelican Optimization Algorithm (POA), and applies it to global optimization and multilevel threshold image segmentation tasks. ACPOA integrates three innovative strategies: the elite pool mutation strategy guides the population toward high-quality regions by constructing an elite pool composed of the three individuals with the best fitness, effectively preventing the premature loss of population diversity; the adaptive cooperative mechanism enhances search efficiency in high-dimensional spaces by dynamically allocating subgroups and dimensions and performing specialized updates to achieve division of labor and global information sharing; and the hybrid boundary handling technique adopts a probabilistic hybrid approach to deal with boundary violations, balancing exploitation, exploration, and diversity while retaining more useful search information. Comparative experiments with eight advanced algorithms on the CEC2017 and CEC2022 benchmark test suites validate the superior optimization performance of ACPOA. Moreover, when applied to multilevel threshold image segmentation tasks, ACPOA demonstrates better accuracy, stability, and efficiency in solving practical problems, providing an effective solution for complex optimization challenges.