IEGS-BoT:医学成像中用于细胞动力学分析的集成检测-跟踪框架。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Shuqin Tu, Weidian Chen, Liang Mao, Quan Zhang, Fang Yuan, Jiaying Du
{"title":"IEGS-BoT:医学成像中用于细胞动力学分析的集成检测-跟踪框架。","authors":"Shuqin Tu, Weidian Chen, Liang Mao, Quan Zhang, Fang Yuan, Jiaying Du","doi":"10.3390/biomimetics10090564","DOIUrl":null,"url":null,"abstract":"<p><p>Cell detection-tracking tasks are vital for biomedical image analysis with potential applications in clinical diagnosis and treatment. However, it poses challenges such as ambiguous boundaries and complex backgrounds in microscopic video sequences, leading to missed detection, false detection, and loss of tracking. Therefore, we propose an enhanced multiple object tracking algorithm IEGS-YOLO + BoT-SORT, named IEGS-BoT, to address these issues. Firstly, the IEGS-YOLO detector is developed for cell detection tasks. It uses the iEMA module, which effectively combines the global information to enhance the local information. Then, we replace the traditional convolutional network in the neck of the YOLO11n with GSConv to reduce the computational complexity while maintaining accuracy. Finally, the BoT-SORT tracker is selected to enhance the accuracy of bounding box positioning through camera motion compensation and Kalman filter. We conduct experiments on the CTMC dataset, and the results show that in the detection phase, the map50 (mean Average Precision) and map50-95 values are 73.2% and 32.6%, outperforming the YOLO11n detector by 1.1% and 0.6%, respectively. In the tracking phase, using the IEGS-BoT method, the multiple objects tracking accuracy (MOTA), higher order tracking accuracy (HOTA), and identification F1 (IDF1) reach 53.97%, 51.30%, and 67.52%, respectively. Compared with the base BoT-SORT, the proposed method achieves improvements of 1.19%, 0.23%, and 1.29% in MOTA, HOTA, and IDF1, respectively. ID switch (IDSW) decreases from 1170 to 894, which demonstrates significant mitigation of identity confusion. This approach effectively addresses the challenges posed by object loss and identity switching in cell tracking, providing a more reliable solution for medical image analysis.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467273/pdf/","citationCount":"0","resultStr":"{\"title\":\"IEGS-BoT: An Integrated Detection-Tracking Framework for Cellular Dynamics Analysis in Medical Imaging.\",\"authors\":\"Shuqin Tu, Weidian Chen, Liang Mao, Quan Zhang, Fang Yuan, Jiaying Du\",\"doi\":\"10.3390/biomimetics10090564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell detection-tracking tasks are vital for biomedical image analysis with potential applications in clinical diagnosis and treatment. However, it poses challenges such as ambiguous boundaries and complex backgrounds in microscopic video sequences, leading to missed detection, false detection, and loss of tracking. Therefore, we propose an enhanced multiple object tracking algorithm IEGS-YOLO + BoT-SORT, named IEGS-BoT, to address these issues. Firstly, the IEGS-YOLO detector is developed for cell detection tasks. It uses the iEMA module, which effectively combines the global information to enhance the local information. Then, we replace the traditional convolutional network in the neck of the YOLO11n with GSConv to reduce the computational complexity while maintaining accuracy. Finally, the BoT-SORT tracker is selected to enhance the accuracy of bounding box positioning through camera motion compensation and Kalman filter. We conduct experiments on the CTMC dataset, and the results show that in the detection phase, the map50 (mean Average Precision) and map50-95 values are 73.2% and 32.6%, outperforming the YOLO11n detector by 1.1% and 0.6%, respectively. In the tracking phase, using the IEGS-BoT method, the multiple objects tracking accuracy (MOTA), higher order tracking accuracy (HOTA), and identification F1 (IDF1) reach 53.97%, 51.30%, and 67.52%, respectively. Compared with the base BoT-SORT, the proposed method achieves improvements of 1.19%, 0.23%, and 1.29% in MOTA, HOTA, and IDF1, respectively. ID switch (IDSW) decreases from 1170 to 894, which demonstrates significant mitigation of identity confusion. This approach effectively addresses the challenges posed by object loss and identity switching in cell tracking, providing a more reliable solution for medical image analysis.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467273/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090564\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090564","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞检测跟踪任务对于生物医学图像分析至关重要,在临床诊断和治疗中具有潜在的应用前景。然而,在微观视频序列中存在边界模糊、背景复杂等问题,容易导致漏检、误检和跟踪丢失。为此,我们提出了一种增强型多目标跟踪算法IEGS-YOLO + BoT-SORT,命名为IEGS-BoT。首先,开发了用于细胞检测任务的IEGS-YOLO检测器。它采用了iEMA模块,有效地结合了全局信息来增强局部信息。然后,我们将YOLO11n颈部的传统卷积网络替换为GSConv,在保持精度的同时降低了计算复杂度。最后,选择BoT-SORT跟踪器,通过摄像机运动补偿和卡尔曼滤波提高边界框定位精度。我们在CTMC数据集上进行了实验,结果表明,在检测阶段,map50 (mean Average Precision)和map50-95的值分别为73.2%和32.6%,分别优于YOLO11n检测器1.1%和0.6%。在跟踪阶段,采用IEGS-BoT方法,多目标跟踪精度(MOTA)、高阶跟踪精度(HOTA)和识别F1 (IDF1)分别达到53.97%、51.30%和67.52%。与基础BoT-SORT相比,该方法在MOTA、HOTA和IDF1上分别提高了1.19%、0.23%和1.29%。ID交换机(IDSW)从1170减少到894,这表明身份混淆得到了显著缓解。该方法有效地解决了细胞跟踪中物体丢失和身份转换带来的挑战,为医学图像分析提供了更可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IEGS-BoT: An Integrated Detection-Tracking Framework for Cellular Dynamics Analysis in Medical Imaging.

Cell detection-tracking tasks are vital for biomedical image analysis with potential applications in clinical diagnosis and treatment. However, it poses challenges such as ambiguous boundaries and complex backgrounds in microscopic video sequences, leading to missed detection, false detection, and loss of tracking. Therefore, we propose an enhanced multiple object tracking algorithm IEGS-YOLO + BoT-SORT, named IEGS-BoT, to address these issues. Firstly, the IEGS-YOLO detector is developed for cell detection tasks. It uses the iEMA module, which effectively combines the global information to enhance the local information. Then, we replace the traditional convolutional network in the neck of the YOLO11n with GSConv to reduce the computational complexity while maintaining accuracy. Finally, the BoT-SORT tracker is selected to enhance the accuracy of bounding box positioning through camera motion compensation and Kalman filter. We conduct experiments on the CTMC dataset, and the results show that in the detection phase, the map50 (mean Average Precision) and map50-95 values are 73.2% and 32.6%, outperforming the YOLO11n detector by 1.1% and 0.6%, respectively. In the tracking phase, using the IEGS-BoT method, the multiple objects tracking accuracy (MOTA), higher order tracking accuracy (HOTA), and identification F1 (IDF1) reach 53.97%, 51.30%, and 67.52%, respectively. Compared with the base BoT-SORT, the proposed method achieves improvements of 1.19%, 0.23%, and 1.29% in MOTA, HOTA, and IDF1, respectively. ID switch (IDSW) decreases from 1170 to 894, which demonstrates significant mitigation of identity confusion. This approach effectively addresses the challenges posed by object loss and identity switching in cell tracking, providing a more reliable solution for medical image analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信