人成骨细胞衍生的生化线索和微表面地形在体外和体内调节成骨。

IF 1.9 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-09-01 DOI:10.1116/6.0004679
Deepa Mishra, Anne Bernhardt, Michael Gelinsky, Bikramjit Basu
{"title":"人成骨细胞衍生的生化线索和微表面地形在体外和体内调节成骨。","authors":"Deepa Mishra, Anne Bernhardt, Michael Gelinsky, Bikramjit Basu","doi":"10.1116/6.0004679","DOIUrl":null,"url":null,"abstract":"<p><p>Indirect co-culture, wherein two distinct cell types are cultivated within the same medium without direct contact, remains a relatively underexplored approach in biomaterials science for simulating physiological cell-cell interactions on material surfaces in vitro. In this study, human mesenchymal stem cells (hMSCs) were cultured on two types of Ti6Al4V substrates (polished and sand-blasted/acid etched) in a co-culture system using conditioned osteogenic differentiation media (cOBM), enriched with soluble factors secreted by human osteoblasts (hOBs). The combined impact of surface microtopography of Ti6Al4V substrates and cOBM supplementation has resulted in the modulation of cell morphology, alkaline phosphatase (ALP) activity, and calcium phosphate mineralization. Enhanced mineralization (2.5-fold increase compared to baseline at day 21) was observed on Ti6Al4V substrates when hMSCs were cultured in the presence of cOBM. This was accompanied by a peak expression of the early osteogenic marker, ALP by day 14. The synergistic behavior of sandblasted and acid-etched substrates with soluble biochemical cues, derived from hOBs showcased their potential for augmenting osteogenic differentiation. The in vitro outcomes were validated in a rabbit model study, which clearly demonstrated better osseointegration of sand-blasted/acid etched implants over 12 weeks.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human osteoblast derived biochemical cues and microsurface topography modulate osteogenesis in vitro and in vivo.\",\"authors\":\"Deepa Mishra, Anne Bernhardt, Michael Gelinsky, Bikramjit Basu\",\"doi\":\"10.1116/6.0004679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indirect co-culture, wherein two distinct cell types are cultivated within the same medium without direct contact, remains a relatively underexplored approach in biomaterials science for simulating physiological cell-cell interactions on material surfaces in vitro. In this study, human mesenchymal stem cells (hMSCs) were cultured on two types of Ti6Al4V substrates (polished and sand-blasted/acid etched) in a co-culture system using conditioned osteogenic differentiation media (cOBM), enriched with soluble factors secreted by human osteoblasts (hOBs). The combined impact of surface microtopography of Ti6Al4V substrates and cOBM supplementation has resulted in the modulation of cell morphology, alkaline phosphatase (ALP) activity, and calcium phosphate mineralization. Enhanced mineralization (2.5-fold increase compared to baseline at day 21) was observed on Ti6Al4V substrates when hMSCs were cultured in the presence of cOBM. This was accompanied by a peak expression of the early osteogenic marker, ALP by day 14. The synergistic behavior of sandblasted and acid-etched substrates with soluble biochemical cues, derived from hOBs showcased their potential for augmenting osteogenic differentiation. The in vitro outcomes were validated in a rabbit model study, which clearly demonstrated better osseointegration of sand-blasted/acid etched implants over 12 weeks.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004679\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004679","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

间接共培养,即在同一培养基中培养两种不同类型的细胞而不直接接触,在生物材料科学中仍然是一种相对未被充分探索的方法,用于模拟体外材料表面的生理细胞-细胞相互作用。在这项研究中,人类间充质干细胞(hMSCs)在两种类型的Ti6Al4V基质(抛光和喷砂/酸蚀)中使用条件成骨分化培养基(cOBM)共培养系统中培养,cOBM富含由人成骨细胞(hOBs)分泌的可溶性因子。Ti6Al4V底物表面微形貌和cOBM补充的综合影响导致细胞形态、碱性磷酸酶(ALP)活性和磷酸钙矿化的调节。在cOBM存在下培养hMSCs时,在Ti6Al4V底物上观察到矿化增强(与基线相比,第21天增加2.5倍)。这伴随着早期成骨标志物ALP在第14天的峰值表达。经喷砂处理和酸蚀的基质与来自滚刀的可溶性生化线索的协同行为显示了它们增强成骨分化的潜力。体外结果在兔模型研究中得到验证,在12周内,喷砂/酸蚀种植体的骨整合性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human osteoblast derived biochemical cues and microsurface topography modulate osteogenesis in vitro and in vivo.

Indirect co-culture, wherein two distinct cell types are cultivated within the same medium without direct contact, remains a relatively underexplored approach in biomaterials science for simulating physiological cell-cell interactions on material surfaces in vitro. In this study, human mesenchymal stem cells (hMSCs) were cultured on two types of Ti6Al4V substrates (polished and sand-blasted/acid etched) in a co-culture system using conditioned osteogenic differentiation media (cOBM), enriched with soluble factors secreted by human osteoblasts (hOBs). The combined impact of surface microtopography of Ti6Al4V substrates and cOBM supplementation has resulted in the modulation of cell morphology, alkaline phosphatase (ALP) activity, and calcium phosphate mineralization. Enhanced mineralization (2.5-fold increase compared to baseline at day 21) was observed on Ti6Al4V substrates when hMSCs were cultured in the presence of cOBM. This was accompanied by a peak expression of the early osteogenic marker, ALP by day 14. The synergistic behavior of sandblasted and acid-etched substrates with soluble biochemical cues, derived from hOBs showcased their potential for augmenting osteogenic differentiation. The in vitro outcomes were validated in a rabbit model study, which clearly demonstrated better osseointegration of sand-blasted/acid etched implants over 12 weeks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信