一种用于数值优化问题的分布式数据导向RIME算法。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Jinghao Yang, Yuanyuan Shao, Bin Fu, Lei Kou
{"title":"一种用于数值优化问题的分布式数据导向RIME算法。","authors":"Jinghao Yang, Yuanyuan Shao, Bin Fu, Lei Kou","doi":"10.3390/biomimetics10090589","DOIUrl":null,"url":null,"abstract":"<p><p>To address the shortcomings of the RIME algorithm's weak global exploration ability, insufficient information exchange among populations, and limited population diversity, this work proposes a distributed data-guided RIME algorithm called DRIME. First, this paper proposes a data-distribution-driven guided learning strategy that enhances information exchange among populations and dynamically guides populations to exploit or explore. Then, a soft-rime search phase based on weighted averaging is proposed, which balances the development and exploration of RIME by alternating with the original strategy. Finally, a candidate pool is utilized to replace the optimal reference point of the hard-rime puncture mechanism to enrich the diversity of the population and reduce the risk of falling into local optima. To evaluate the performance of the DRIME algorithm, parameter sensitivity analysis, policy effectiveness analysis, and two comparative analyses are performed on the CEC-2017 test set and the CEC-2022 test set. The parameter sensitivity analysis identifies the optimal parameter settings for the DRIME algorithm. The strategy effectiveness analysis confirms the effectiveness of the improved strategies. In comparison with ACGRIME, TERIME, IRIME, DNMRIME, GLSRIME, and HERIME on the CEC-2017 test set, the DRIME algorithm achieves Friedman rankings of 1.517, 1.069, 1.138, and 1.069 in different dimensions. In comparison with EOSMA, GLS-MPA, ISGTOA, EMTLBO, LSHADE-SPACMA, and APSM-jSO on the CEC-2022 test set, the DRIME algorithm achieves Friedman rankings of 2.167 and 1.917 in 10 and 30 dimensions, respectively. In addition, the DRIME algorithm achieved an average ranking of 1.23 in engineering constraint optimization problems, far surpassing other comparison algorithms. In conclusion, the numerical optimization experiments successfully illustrate that the DRIME algorithm has excellent search capability and can provide satisfactory solutions to a wide range of optimization problems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467795/pdf/","citationCount":"0","resultStr":"{\"title\":\"DRIME: A Distributed Data-Guided RIME Algorithm for Numerical Optimization Problems.\",\"authors\":\"Jinghao Yang, Yuanyuan Shao, Bin Fu, Lei Kou\",\"doi\":\"10.3390/biomimetics10090589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the shortcomings of the RIME algorithm's weak global exploration ability, insufficient information exchange among populations, and limited population diversity, this work proposes a distributed data-guided RIME algorithm called DRIME. First, this paper proposes a data-distribution-driven guided learning strategy that enhances information exchange among populations and dynamically guides populations to exploit or explore. Then, a soft-rime search phase based on weighted averaging is proposed, which balances the development and exploration of RIME by alternating with the original strategy. Finally, a candidate pool is utilized to replace the optimal reference point of the hard-rime puncture mechanism to enrich the diversity of the population and reduce the risk of falling into local optima. To evaluate the performance of the DRIME algorithm, parameter sensitivity analysis, policy effectiveness analysis, and two comparative analyses are performed on the CEC-2017 test set and the CEC-2022 test set. The parameter sensitivity analysis identifies the optimal parameter settings for the DRIME algorithm. The strategy effectiveness analysis confirms the effectiveness of the improved strategies. In comparison with ACGRIME, TERIME, IRIME, DNMRIME, GLSRIME, and HERIME on the CEC-2017 test set, the DRIME algorithm achieves Friedman rankings of 1.517, 1.069, 1.138, and 1.069 in different dimensions. In comparison with EOSMA, GLS-MPA, ISGTOA, EMTLBO, LSHADE-SPACMA, and APSM-jSO on the CEC-2022 test set, the DRIME algorithm achieves Friedman rankings of 2.167 and 1.917 in 10 and 30 dimensions, respectively. In addition, the DRIME algorithm achieved an average ranking of 1.23 in engineering constraint optimization problems, far surpassing other comparison algorithms. In conclusion, the numerical optimization experiments successfully illustrate that the DRIME algorithm has excellent search capability and can provide satisfactory solutions to a wide range of optimization problems.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090589\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090589","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对RIME算法全局探索能力弱、种群间信息交换不足、种群多样性有限等缺点,本文提出了一种分布式数据导向的RIME算法——DRIME。首先,提出了一种数据分布驱动的引导学习策略,增强种群之间的信息交换,动态引导种群进行开发或探索。然后,提出了一种基于加权平均的软时间搜索阶段,通过与原策略的交替来平衡时间的开发和探索。最后,利用候选池替代硬时穿刺机制的最优参考点,丰富种群的多样性,降低陷入局部最优的风险。为了评价DRIME算法的性能,分别对CEC-2017和CEC-2022测试集进行了参数敏感性分析、政策有效性分析和两项对比分析。参数灵敏度分析确定了DRIME算法的最佳参数设置。战略有效性分析证实了改进后战略的有效性。与CEC-2017测试集上的ACGRIME、TERIME、IRIME、DNMRIME、GLSRIME、HERIME相比,DRIME算法在不同维度上的Friedman排名分别为1.517、1.069、1.138、1.069。与CEC-2022测试集上的EOSMA、GLS-MPA、ISGTOA、EMTLBO、LSHADE-SPACMA和APSM-jSO相比,DRIME算法在10维和30维上的Friedman排名分别为2.167和1.917。此外,在工程约束优化问题中,DRIME算法的平均排名为1.23,远远超过其他比较算法。综上所述,数值优化实验成功地说明了DRIME算法具有出色的搜索能力,可以为广泛的优化问题提供满意的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRIME: A Distributed Data-Guided RIME Algorithm for Numerical Optimization Problems.

To address the shortcomings of the RIME algorithm's weak global exploration ability, insufficient information exchange among populations, and limited population diversity, this work proposes a distributed data-guided RIME algorithm called DRIME. First, this paper proposes a data-distribution-driven guided learning strategy that enhances information exchange among populations and dynamically guides populations to exploit or explore. Then, a soft-rime search phase based on weighted averaging is proposed, which balances the development and exploration of RIME by alternating with the original strategy. Finally, a candidate pool is utilized to replace the optimal reference point of the hard-rime puncture mechanism to enrich the diversity of the population and reduce the risk of falling into local optima. To evaluate the performance of the DRIME algorithm, parameter sensitivity analysis, policy effectiveness analysis, and two comparative analyses are performed on the CEC-2017 test set and the CEC-2022 test set. The parameter sensitivity analysis identifies the optimal parameter settings for the DRIME algorithm. The strategy effectiveness analysis confirms the effectiveness of the improved strategies. In comparison with ACGRIME, TERIME, IRIME, DNMRIME, GLSRIME, and HERIME on the CEC-2017 test set, the DRIME algorithm achieves Friedman rankings of 1.517, 1.069, 1.138, and 1.069 in different dimensions. In comparison with EOSMA, GLS-MPA, ISGTOA, EMTLBO, LSHADE-SPACMA, and APSM-jSO on the CEC-2022 test set, the DRIME algorithm achieves Friedman rankings of 2.167 and 1.917 in 10 and 30 dimensions, respectively. In addition, the DRIME algorithm achieved an average ranking of 1.23 in engineering constraint optimization problems, far surpassing other comparison algorithms. In conclusion, the numerical optimization experiments successfully illustrate that the DRIME algorithm has excellent search capability and can provide satisfactory solutions to a wide range of optimization problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信