{"title":"基质顺应性对树蛙跳跃机制的影响。","authors":"Rui Zhou, Baowen Zhang, Zhouyi Wang, Zhendong Dai","doi":"10.3390/biomimetics10090604","DOIUrl":null,"url":null,"abstract":"<p><p>Animal locomotion in complex environments depends on the ability to adaptively regulate movement in response to substrate mechanics. Tree frogs (<i>Polypedates dennysi</i>), which combine jumping and adhesive capabilities, inhabit arboreal habitats with a wide range of compliant substrates. While previous studies have offered preliminary insights into their locomotion, the biomechanical mechanisms underlying their adaptability remain poorly characterized. In this study, we developed a stiffness-adjustable takeoff substrate supported by four springs, and combined it with a 3D motion capture system to analyze the jumping dynamics and kinematics of frogs across a broader range of compliant substrates. We found that energy recovery from the substrate was influenced by compliance. On the stiffest substrate, up to 50% of the stored energy was recovered during takeoff, whereas highly compliant substrates caused nonlinear damping, energy dissipation, and even takeoff failure. During takeoff, frogs generated peak normal forces up to 6 times their body weight and fore-aft forces up to 4.5 times their body weight. However, force generation showed limited adaptability to substrate mechanics, while takeoff velocity exhibited stronger adaptability to changes in compliance. These findings reveal a trade-off between substrate mechanics and jump performance. This work provides biomechanical insight into substrate preference and informs the design of bioinspired systems capable of efficient locomotion on compliant substrates.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466953/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Substrate Compliance on the Jumping Mechanism of the Tree Frog (<i>Polypedates dennys</i>).\",\"authors\":\"Rui Zhou, Baowen Zhang, Zhouyi Wang, Zhendong Dai\",\"doi\":\"10.3390/biomimetics10090604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animal locomotion in complex environments depends on the ability to adaptively regulate movement in response to substrate mechanics. Tree frogs (<i>Polypedates dennysi</i>), which combine jumping and adhesive capabilities, inhabit arboreal habitats with a wide range of compliant substrates. While previous studies have offered preliminary insights into their locomotion, the biomechanical mechanisms underlying their adaptability remain poorly characterized. In this study, we developed a stiffness-adjustable takeoff substrate supported by four springs, and combined it with a 3D motion capture system to analyze the jumping dynamics and kinematics of frogs across a broader range of compliant substrates. We found that energy recovery from the substrate was influenced by compliance. On the stiffest substrate, up to 50% of the stored energy was recovered during takeoff, whereas highly compliant substrates caused nonlinear damping, energy dissipation, and even takeoff failure. During takeoff, frogs generated peak normal forces up to 6 times their body weight and fore-aft forces up to 4.5 times their body weight. However, force generation showed limited adaptability to substrate mechanics, while takeoff velocity exhibited stronger adaptability to changes in compliance. These findings reveal a trade-off between substrate mechanics and jump performance. This work provides biomechanical insight into substrate preference and informs the design of bioinspired systems capable of efficient locomotion on compliant substrates.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090604\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090604","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Substrate Compliance on the Jumping Mechanism of the Tree Frog (Polypedates dennys).
Animal locomotion in complex environments depends on the ability to adaptively regulate movement in response to substrate mechanics. Tree frogs (Polypedates dennysi), which combine jumping and adhesive capabilities, inhabit arboreal habitats with a wide range of compliant substrates. While previous studies have offered preliminary insights into their locomotion, the biomechanical mechanisms underlying their adaptability remain poorly characterized. In this study, we developed a stiffness-adjustable takeoff substrate supported by four springs, and combined it with a 3D motion capture system to analyze the jumping dynamics and kinematics of frogs across a broader range of compliant substrates. We found that energy recovery from the substrate was influenced by compliance. On the stiffest substrate, up to 50% of the stored energy was recovered during takeoff, whereas highly compliant substrates caused nonlinear damping, energy dissipation, and even takeoff failure. During takeoff, frogs generated peak normal forces up to 6 times their body weight and fore-aft forces up to 4.5 times their body weight. However, force generation showed limited adaptability to substrate mechanics, while takeoff velocity exhibited stronger adaptability to changes in compliance. These findings reveal a trade-off between substrate mechanics and jump performance. This work provides biomechanical insight into substrate preference and informs the design of bioinspired systems capable of efficient locomotion on compliant substrates.