{"title":"利用遗传算法优化海上搜救计划:结合民用船舶协作。","authors":"Seung-Yeol Hong, Yong-Hyuk Kim","doi":"10.3390/biomimetics10090588","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a biomimetic optimization approach for maritime Search and Rescue (SAR) planning using a Genetic Algorithm (GA). The goal is to maximize the number of detected drifting targets by optimally deploying both official and civilian Search and Rescue Units (SRUs). The proposed method incorporates a POD-adjusted fitness function with collision-avoidance constraints and is enhanced by a greedy initialization strategy. To validate its effectiveness, we compare the GA against a baseline method (EAGD) that combines a (1 + 1)-Evolutionary Algorithm with greedy deployment, across 24 experiments involving 2 realistic maritime scenarios and 12 coverage conditions. Results show that GA consistently achieves higher average fitness and stability, particularly under stress-test settings involving only civilian vessels. The findings underscore the potential of biomimetic algorithms for real-time, flexible, and scalable SAR planning, while highlighting the value of civilian participation in emergency maritime operations.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467627/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Maritime Search and Rescue Planning via Genetic Algorithms: Incorporating Civilian Vessel Collaboration.\",\"authors\":\"Seung-Yeol Hong, Yong-Hyuk Kim\",\"doi\":\"10.3390/biomimetics10090588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes a biomimetic optimization approach for maritime Search and Rescue (SAR) planning using a Genetic Algorithm (GA). The goal is to maximize the number of detected drifting targets by optimally deploying both official and civilian Search and Rescue Units (SRUs). The proposed method incorporates a POD-adjusted fitness function with collision-avoidance constraints and is enhanced by a greedy initialization strategy. To validate its effectiveness, we compare the GA against a baseline method (EAGD) that combines a (1 + 1)-Evolutionary Algorithm with greedy deployment, across 24 experiments involving 2 realistic maritime scenarios and 12 coverage conditions. Results show that GA consistently achieves higher average fitness and stability, particularly under stress-test settings involving only civilian vessels. The findings underscore the potential of biomimetic algorithms for real-time, flexible, and scalable SAR planning, while highlighting the value of civilian participation in emergency maritime operations.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090588\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090588","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Maritime Search and Rescue Planning via Genetic Algorithms: Incorporating Civilian Vessel Collaboration.
This study proposes a biomimetic optimization approach for maritime Search and Rescue (SAR) planning using a Genetic Algorithm (GA). The goal is to maximize the number of detected drifting targets by optimally deploying both official and civilian Search and Rescue Units (SRUs). The proposed method incorporates a POD-adjusted fitness function with collision-avoidance constraints and is enhanced by a greedy initialization strategy. To validate its effectiveness, we compare the GA against a baseline method (EAGD) that combines a (1 + 1)-Evolutionary Algorithm with greedy deployment, across 24 experiments involving 2 realistic maritime scenarios and 12 coverage conditions. Results show that GA consistently achieves higher average fitness and stability, particularly under stress-test settings involving only civilian vessels. The findings underscore the potential of biomimetic algorithms for real-time, flexible, and scalable SAR planning, while highlighting the value of civilian participation in emergency maritime operations.