利用遗传算法优化海上搜救计划:结合民用船舶协作。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Seung-Yeol Hong, Yong-Hyuk Kim
{"title":"利用遗传算法优化海上搜救计划:结合民用船舶协作。","authors":"Seung-Yeol Hong, Yong-Hyuk Kim","doi":"10.3390/biomimetics10090588","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a biomimetic optimization approach for maritime Search and Rescue (SAR) planning using a Genetic Algorithm (GA). The goal is to maximize the number of detected drifting targets by optimally deploying both official and civilian Search and Rescue Units (SRUs). The proposed method incorporates a POD-adjusted fitness function with collision-avoidance constraints and is enhanced by a greedy initialization strategy. To validate its effectiveness, we compare the GA against a baseline method (EAGD) that combines a (1 + 1)-Evolutionary Algorithm with greedy deployment, across 24 experiments involving 2 realistic maritime scenarios and 12 coverage conditions. Results show that GA consistently achieves higher average fitness and stability, particularly under stress-test settings involving only civilian vessels. The findings underscore the potential of biomimetic algorithms for real-time, flexible, and scalable SAR planning, while highlighting the value of civilian participation in emergency maritime operations.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467627/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Maritime Search and Rescue Planning via Genetic Algorithms: Incorporating Civilian Vessel Collaboration.\",\"authors\":\"Seung-Yeol Hong, Yong-Hyuk Kim\",\"doi\":\"10.3390/biomimetics10090588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes a biomimetic optimization approach for maritime Search and Rescue (SAR) planning using a Genetic Algorithm (GA). The goal is to maximize the number of detected drifting targets by optimally deploying both official and civilian Search and Rescue Units (SRUs). The proposed method incorporates a POD-adjusted fitness function with collision-avoidance constraints and is enhanced by a greedy initialization strategy. To validate its effectiveness, we compare the GA against a baseline method (EAGD) that combines a (1 + 1)-Evolutionary Algorithm with greedy deployment, across 24 experiments involving 2 realistic maritime scenarios and 12 coverage conditions. Results show that GA consistently achieves higher average fitness and stability, particularly under stress-test settings involving only civilian vessels. The findings underscore the potential of biomimetic algorithms for real-time, flexible, and scalable SAR planning, while highlighting the value of civilian participation in emergency maritime operations.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090588\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090588","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于遗传算法的海上搜救(SAR)规划仿生优化方法。目标是通过最佳部署官方和民用搜索和救援单位(sru)来最大化探测到的漂移目标数量。该方法引入了带有避碰约束的pod调整适应度函数,并通过贪婪初始化策略进行了增强。为了验证其有效性,我们将遗传算法与基线方法(EAGD)进行了比较,该方法将(1 + 1)-进化算法与贪婪部署相结合,涉及2个现实海洋场景和12个覆盖条件的24个实验。结果表明,遗传算法始终能够获得更高的平均适应度和稳定性,特别是在仅涉及民用船舶的压力测试设置下。研究结果强调了仿生算法在实时、灵活和可扩展的SAR规划方面的潜力,同时强调了平民参与紧急海上行动的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing Maritime Search and Rescue Planning via Genetic Algorithms: Incorporating Civilian Vessel Collaboration.

Optimizing Maritime Search and Rescue Planning via Genetic Algorithms: Incorporating Civilian Vessel Collaboration.

Optimizing Maritime Search and Rescue Planning via Genetic Algorithms: Incorporating Civilian Vessel Collaboration.

Optimizing Maritime Search and Rescue Planning via Genetic Algorithms: Incorporating Civilian Vessel Collaboration.

This study proposes a biomimetic optimization approach for maritime Search and Rescue (SAR) planning using a Genetic Algorithm (GA). The goal is to maximize the number of detected drifting targets by optimally deploying both official and civilian Search and Rescue Units (SRUs). The proposed method incorporates a POD-adjusted fitness function with collision-avoidance constraints and is enhanced by a greedy initialization strategy. To validate its effectiveness, we compare the GA against a baseline method (EAGD) that combines a (1 + 1)-Evolutionary Algorithm with greedy deployment, across 24 experiments involving 2 realistic maritime scenarios and 12 coverage conditions. Results show that GA consistently achieves higher average fitness and stability, particularly under stress-test settings involving only civilian vessels. The findings underscore the potential of biomimetic algorithms for real-time, flexible, and scalable SAR planning, while highlighting the value of civilian participation in emergency maritime operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信