{"title":"多策略改进红嘴蓝喜鹊优化算法及其应用。","authors":"Yancang Li, Jiaqi Zhi, Xinle Wang, Binli Shi","doi":"10.3390/biomimetics10090592","DOIUrl":null,"url":null,"abstract":"<p><p>To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh-cosh search strategy is used to enhance global exploration and speed up convergence. Second, a neighborhood-guided reinforcement strategy helps the algorithm avoid local optima. Third, a crossover strategy is also introduced to improve convergence accuracy. SWRBMO is evaluated on 15 benchmark functions selected from the CEC2005 test suite, with ablation studies on 12 of them, and further validated on the CEC2019 and CEC2021 test suites. Across all test sets, its convergence behavior and statistical significance are analyzed using the Wilcoxon rank-sum test. Comparative experiments on CEC2019 and CEC2021 demonstrate that SWRBMO achieves faster convergence and higher accuracy than RBMO and other competitive algorithms. Finally, four engineering design problems further confirm its practicality, where SWRBMO outperforms other methods by up to 99%, 38.4%, 2.4%, and nearly 100% in the respective cases, highlighting its strong potential for real-world engineering applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Strategy Improved Red-Billed Blue Magpie Optimization Algorithm and Its Applications.\",\"authors\":\"Yancang Li, Jiaqi Zhi, Xinle Wang, Binli Shi\",\"doi\":\"10.3390/biomimetics10090592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh-cosh search strategy is used to enhance global exploration and speed up convergence. Second, a neighborhood-guided reinforcement strategy helps the algorithm avoid local optima. Third, a crossover strategy is also introduced to improve convergence accuracy. SWRBMO is evaluated on 15 benchmark functions selected from the CEC2005 test suite, with ablation studies on 12 of them, and further validated on the CEC2019 and CEC2021 test suites. Across all test sets, its convergence behavior and statistical significance are analyzed using the Wilcoxon rank-sum test. Comparative experiments on CEC2019 and CEC2021 demonstrate that SWRBMO achieves faster convergence and higher accuracy than RBMO and other competitive algorithms. Finally, four engineering design problems further confirm its practicality, where SWRBMO outperforms other methods by up to 99%, 38.4%, 2.4%, and nearly 100% in the respective cases, highlighting its strong potential for real-world engineering applications.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090592\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Strategy Improved Red-Billed Blue Magpie Optimization Algorithm and Its Applications.
To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh-cosh search strategy is used to enhance global exploration and speed up convergence. Second, a neighborhood-guided reinforcement strategy helps the algorithm avoid local optima. Third, a crossover strategy is also introduced to improve convergence accuracy. SWRBMO is evaluated on 15 benchmark functions selected from the CEC2005 test suite, with ablation studies on 12 of them, and further validated on the CEC2019 and CEC2021 test suites. Across all test sets, its convergence behavior and statistical significance are analyzed using the Wilcoxon rank-sum test. Comparative experiments on CEC2019 and CEC2021 demonstrate that SWRBMO achieves faster convergence and higher accuracy than RBMO and other competitive algorithms. Finally, four engineering design problems further confirm its practicality, where SWRBMO outperforms other methods by up to 99%, 38.4%, 2.4%, and nearly 100% in the respective cases, highlighting its strong potential for real-world engineering applications.