多策略改进红嘴蓝喜鹊优化算法及其应用。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yancang Li, Jiaqi Zhi, Xinle Wang, Binli Shi
{"title":"多策略改进红嘴蓝喜鹊优化算法及其应用。","authors":"Yancang Li, Jiaqi Zhi, Xinle Wang, Binli Shi","doi":"10.3390/biomimetics10090592","DOIUrl":null,"url":null,"abstract":"<p><p>To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh-cosh search strategy is used to enhance global exploration and speed up convergence. Second, a neighborhood-guided reinforcement strategy helps the algorithm avoid local optima. Third, a crossover strategy is also introduced to improve convergence accuracy. SWRBMO is evaluated on 15 benchmark functions selected from the CEC2005 test suite, with ablation studies on 12 of them, and further validated on the CEC2019 and CEC2021 test suites. Across all test sets, its convergence behavior and statistical significance are analyzed using the Wilcoxon rank-sum test. Comparative experiments on CEC2019 and CEC2021 demonstrate that SWRBMO achieves faster convergence and higher accuracy than RBMO and other competitive algorithms. Finally, four engineering design problems further confirm its practicality, where SWRBMO outperforms other methods by up to 99%, 38.4%, 2.4%, and nearly 100% in the respective cases, highlighting its strong potential for real-world engineering applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Strategy Improved Red-Billed Blue Magpie Optimization Algorithm and Its Applications.\",\"authors\":\"Yancang Li, Jiaqi Zhi, Xinle Wang, Binli Shi\",\"doi\":\"10.3390/biomimetics10090592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh-cosh search strategy is used to enhance global exploration and speed up convergence. Second, a neighborhood-guided reinforcement strategy helps the algorithm avoid local optima. Third, a crossover strategy is also introduced to improve convergence accuracy. SWRBMO is evaluated on 15 benchmark functions selected from the CEC2005 test suite, with ablation studies on 12 of them, and further validated on the CEC2019 and CEC2021 test suites. Across all test sets, its convergence behavior and statistical significance are analyzed using the Wilcoxon rank-sum test. Comparative experiments on CEC2019 and CEC2021 demonstrate that SWRBMO achieves faster convergence and higher accuracy than RBMO and other competitive algorithms. Finally, four engineering design problems further confirm its practicality, where SWRBMO outperforms other methods by up to 99%, 38.4%, 2.4%, and nearly 100% in the respective cases, highlighting its strong potential for real-world engineering applications.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090592\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对红嘴蓝喜鹊优化算法(RBMO)收敛精度低、种群多样性差、易受局部最优影响等问题,提出了一种改进的多策略红嘴蓝喜鹊优化算法(SWRBMO)。首先,采用基于自适应t分布的sinh-cosh搜索策略,增强全局搜索能力,加快收敛速度;其次,邻域引导强化策略帮助算法避免局部最优。第三,引入交叉策略提高收敛精度。SWRBMO对从CEC2005测试套件中选择的15个基准函数进行了评估,对其中12个进行了消融研究,并在CEC2019和CEC2021测试套件上进行了进一步验证。在所有测试集上,使用Wilcoxon秩和检验分析其收敛行为和统计显著性。在CEC2019和CEC2021上的对比实验表明,SWRBMO比RBMO等竞争算法收敛速度更快,精度更高。最后,四个工程设计问题进一步证实了SWRBMO的实用性,分别比其他方法的性能高出99%、38.4%、2.4%和近100%,突出了其在实际工程应用中的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Strategy Improved Red-Billed Blue Magpie Optimization Algorithm and Its Applications.

To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh-cosh search strategy is used to enhance global exploration and speed up convergence. Second, a neighborhood-guided reinforcement strategy helps the algorithm avoid local optima. Third, a crossover strategy is also introduced to improve convergence accuracy. SWRBMO is evaluated on 15 benchmark functions selected from the CEC2005 test suite, with ablation studies on 12 of them, and further validated on the CEC2019 and CEC2021 test suites. Across all test sets, its convergence behavior and statistical significance are analyzed using the Wilcoxon rank-sum test. Comparative experiments on CEC2019 and CEC2021 demonstrate that SWRBMO achieves faster convergence and higher accuracy than RBMO and other competitive algorithms. Finally, four engineering design problems further confirm its practicality, where SWRBMO outperforms other methods by up to 99%, 38.4%, 2.4%, and nearly 100% in the respective cases, highlighting its strong potential for real-world engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信