Maryam Al-Kaabi, Nabil Zouari, Mohammad Yousaf Ashfaq, Mohammad A Al-Ghouti
{"title":"利用MALDI-TOF质谱和多元统计分析,探索具有烃降解潜力的采出水细菌的多样性。","authors":"Maryam Al-Kaabi, Nabil Zouari, Mohammad Yousaf Ashfaq, Mohammad A Al-Ghouti","doi":"10.1007/s10529-025-03641-0","DOIUrl":null,"url":null,"abstract":"<p><p>The success of bioremediation of produced water relies on the use of hydrocarbon-degrading bacteria. Hence, the selection of highly tolerant endogenous strains from produced water is crucial to designing successful bioremediation. However, the employed isolation and screening approaches are, in general, long. Integrative and rapid approaches based on microbiological and molecular techniques are now required due to the frequent fluctuation of the composition of the produced water. Here, enrichment cultures at high toxicity followed by protein profiling using MALDI-TOF MS were shown to be efficient in clustering the endogenous hydrocarbon-degrading bacteria and help select the potential candidates. Several bacterial strains (n = 18) were isolated from produced water sampled from Qatar's North Field natural gas production. Fourteen strains were identified as Bacillus cereus (n = 14), and one as Staphylococcus hominis (n = 1) using MALDI-TOF MS. Three strains were identified as Aneurinibacillus humi (n = 2) and Aneurinibacillus aneurinilyticus (n = 1) through ribotyping. The strains were further differentiated based on their protein profiles using MALDI-TOF MS and multivariate statistical analyses. Multivariate analyses (composite correlation index, principal component analysis, and dendrogram) demonstrated substantial diversity among the isolates, highlighting their potential as robust candidates for bioremediation and produced water treatment.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 5","pages":"116"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474702/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the diversity of produced water bacteria with hydrocarbon-degrading potential using MALDI-TOF MS and multivariate statistical analyses.\",\"authors\":\"Maryam Al-Kaabi, Nabil Zouari, Mohammad Yousaf Ashfaq, Mohammad A Al-Ghouti\",\"doi\":\"10.1007/s10529-025-03641-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The success of bioremediation of produced water relies on the use of hydrocarbon-degrading bacteria. Hence, the selection of highly tolerant endogenous strains from produced water is crucial to designing successful bioremediation. However, the employed isolation and screening approaches are, in general, long. Integrative and rapid approaches based on microbiological and molecular techniques are now required due to the frequent fluctuation of the composition of the produced water. Here, enrichment cultures at high toxicity followed by protein profiling using MALDI-TOF MS were shown to be efficient in clustering the endogenous hydrocarbon-degrading bacteria and help select the potential candidates. Several bacterial strains (n = 18) were isolated from produced water sampled from Qatar's North Field natural gas production. Fourteen strains were identified as Bacillus cereus (n = 14), and one as Staphylococcus hominis (n = 1) using MALDI-TOF MS. Three strains were identified as Aneurinibacillus humi (n = 2) and Aneurinibacillus aneurinilyticus (n = 1) through ribotyping. The strains were further differentiated based on their protein profiles using MALDI-TOF MS and multivariate statistical analyses. Multivariate analyses (composite correlation index, principal component analysis, and dendrogram) demonstrated substantial diversity among the isolates, highlighting their potential as robust candidates for bioremediation and produced water treatment.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 5\",\"pages\":\"116\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03641-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03641-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exploring the diversity of produced water bacteria with hydrocarbon-degrading potential using MALDI-TOF MS and multivariate statistical analyses.
The success of bioremediation of produced water relies on the use of hydrocarbon-degrading bacteria. Hence, the selection of highly tolerant endogenous strains from produced water is crucial to designing successful bioremediation. However, the employed isolation and screening approaches are, in general, long. Integrative and rapid approaches based on microbiological and molecular techniques are now required due to the frequent fluctuation of the composition of the produced water. Here, enrichment cultures at high toxicity followed by protein profiling using MALDI-TOF MS were shown to be efficient in clustering the endogenous hydrocarbon-degrading bacteria and help select the potential candidates. Several bacterial strains (n = 18) were isolated from produced water sampled from Qatar's North Field natural gas production. Fourteen strains were identified as Bacillus cereus (n = 14), and one as Staphylococcus hominis (n = 1) using MALDI-TOF MS. Three strains were identified as Aneurinibacillus humi (n = 2) and Aneurinibacillus aneurinilyticus (n = 1) through ribotyping. The strains were further differentiated based on their protein profiles using MALDI-TOF MS and multivariate statistical analyses. Multivariate analyses (composite correlation index, principal component analysis, and dendrogram) demonstrated substantial diversity among the isolates, highlighting their potential as robust candidates for bioremediation and produced water treatment.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.