多自由度仿生气动软执行器的设计与机器学习建模。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yu Zhang, Linghui Peng, Wenchuan Zhao, Ning Wang, Zheng Zhang
{"title":"多自由度仿生气动软执行器的设计与机器学习建模。","authors":"Yu Zhang, Linghui Peng, Wenchuan Zhao, Ning Wang, Zheng Zhang","doi":"10.3390/biomimetics10090615","DOIUrl":null,"url":null,"abstract":"<p><p>A novel multi-degree-of-freedom bionic Soft Pneumatic Actuator (SPA) inspired by the shoulder joint of a sea turtle is proposed. The SPA is mainly composed of a combination of oblique chamber actuator units capable of omnidirectional bending and bi-directional twisting, which can restore the multi-modal motions of a sea turtle's flipper limb in three-dimensional space. To address the nonlinear behavior of the complex structure of SPA, traditional modeling is difficult. The attitude information of each axis of the actuator is extracted in real time using a high-precision Inertial Measurement Unit (IMU), and the attitude outputs of the SPA are modeled using six machine learning methods. The results show that the XGBoost model performs best in attitude modeling. Its R<sup>2</sup> can reach 0.974, and the average absolute errors of angles in Roll, Pitch, and Yaw axes are 1.315°, 1.543°, and 1.048°, respectively. The multi-axis attitude of the SPA can be predicted with high accuracy in real time. The studies on deformation capability, actuation output performance, and underwater validation experiments demonstrate that the SPA meets the bionic sea turtle shoulder joint requirements. This study provides a new theoretical foundation and technical path for the development, control, and bionic application of complex multi-degree-of-freedom SPA systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and Machine Learning Modeling of a Multi-Degree-of-Freedom Bionic Pneumatic Soft Actuator.\",\"authors\":\"Yu Zhang, Linghui Peng, Wenchuan Zhao, Ning Wang, Zheng Zhang\",\"doi\":\"10.3390/biomimetics10090615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel multi-degree-of-freedom bionic Soft Pneumatic Actuator (SPA) inspired by the shoulder joint of a sea turtle is proposed. The SPA is mainly composed of a combination of oblique chamber actuator units capable of omnidirectional bending and bi-directional twisting, which can restore the multi-modal motions of a sea turtle's flipper limb in three-dimensional space. To address the nonlinear behavior of the complex structure of SPA, traditional modeling is difficult. The attitude information of each axis of the actuator is extracted in real time using a high-precision Inertial Measurement Unit (IMU), and the attitude outputs of the SPA are modeled using six machine learning methods. The results show that the XGBoost model performs best in attitude modeling. Its R<sup>2</sup> can reach 0.974, and the average absolute errors of angles in Roll, Pitch, and Yaw axes are 1.315°, 1.543°, and 1.048°, respectively. The multi-axis attitude of the SPA can be predicted with high accuracy in real time. The studies on deformation capability, actuation output performance, and underwater validation experiments demonstrate that the SPA meets the bionic sea turtle shoulder joint requirements. This study provides a new theoretical foundation and technical path for the development, control, and bionic application of complex multi-degree-of-freedom SPA systems.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090615\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090615","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以海龟肩关节为灵感,提出了一种新型的多自由度仿生柔性气动执行器(SPA)。SPA主要由具有全方位弯曲和双向扭转功能的斜腔执行器单元组合而成,可以在三维空间中还原海龟鳍肢的多模态运动。为了解决复杂结构的非线性行为,传统的建模是困难的。利用高精度惯性测量单元(IMU)实时提取作动器各轴的姿态信息,利用6种机器学习方法对SPA的姿态输出进行建模。结果表明,XGBoost模型在姿态建模中表现最好。其R2可达0.974,Roll、Pitch、Yaw轴角度的平均绝对误差分别为1.315°、1.543°、1.048°。可以对多轴姿态进行高精度的实时预测。通过变形能力、驱动输出性能和水下验证实验的研究表明,SPA满足仿生海龟肩关节的要求。本研究为复杂多自由度SPA系统的开发、控制和仿生应用提供了新的理论基础和技术路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Machine Learning Modeling of a Multi-Degree-of-Freedom Bionic Pneumatic Soft Actuator.

Design and Machine Learning Modeling of a Multi-Degree-of-Freedom Bionic Pneumatic Soft Actuator.

Design and Machine Learning Modeling of a Multi-Degree-of-Freedom Bionic Pneumatic Soft Actuator.

Design and Machine Learning Modeling of a Multi-Degree-of-Freedom Bionic Pneumatic Soft Actuator.

A novel multi-degree-of-freedom bionic Soft Pneumatic Actuator (SPA) inspired by the shoulder joint of a sea turtle is proposed. The SPA is mainly composed of a combination of oblique chamber actuator units capable of omnidirectional bending and bi-directional twisting, which can restore the multi-modal motions of a sea turtle's flipper limb in three-dimensional space. To address the nonlinear behavior of the complex structure of SPA, traditional modeling is difficult. The attitude information of each axis of the actuator is extracted in real time using a high-precision Inertial Measurement Unit (IMU), and the attitude outputs of the SPA are modeled using six machine learning methods. The results show that the XGBoost model performs best in attitude modeling. Its R2 can reach 0.974, and the average absolute errors of angles in Roll, Pitch, and Yaw axes are 1.315°, 1.543°, and 1.048°, respectively. The multi-axis attitude of the SPA can be predicted with high accuracy in real time. The studies on deformation capability, actuation output performance, and underwater validation experiments demonstrate that the SPA meets the bionic sea turtle shoulder joint requirements. This study provides a new theoretical foundation and technical path for the development, control, and bionic application of complex multi-degree-of-freedom SPA systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信