Haotian Ju, Zihang Guan, Junchen Liu, Yao Huang, Kerui Sun, Lele Li, Weimao Wang, Tianjiao Zheng, Quan Xiong, Jie Zhao, Yanhe Zhu
{"title":"基于凸轮的恒力悬架背包隔离动载荷的简单设计。","authors":"Haotian Ju, Zihang Guan, Junchen Liu, Yao Huang, Kerui Sun, Lele Li, Weimao Wang, Tianjiao Zheng, Quan Xiong, Jie Zhao, Yanhe Zhu","doi":"10.3390/biomimetics10090607","DOIUrl":null,"url":null,"abstract":"<p><p>Prolonged load carriage with ordinary backpacks (OBs) can cause muscle fatigue and skeletal injuries. Research indicates that suspended backpacks can effectively reduce energy expenditure; however, existing elastic rope-based suspension backpacks struggle to adapt to different speeds, while active suspension backpacks gain significant additional weight due to the incorporated motors and batteries. This paper presents a novel cam-based constant-force suspension backpack (CCSB). The CCSB employs a cam-spring mechanism with near-zero suspension stiffness to minimize the inertial forces generated by load oscillations. A test platform was constructed to evaluate the constant-force performance of the mechanism, showing a maximum error of less than 1.96%. Load-carrying experiments were conducted at different walking speeds. Laboratory test results show that, compared with OBs, the CCSB reduces peak accelerative vertical force by an average of 84.47% and reduces human metabolic costs by 10.58%. Outdoor tests show that the CCSB can reduce transportation consumption by 8.26%. The CCSB's compact structure makes it more suitable for commercialization and demonstrates significant potential for practical applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cam-Based Simple Design of Constant-Force Suspension Backpack to Isolate Dynamic Load.\",\"authors\":\"Haotian Ju, Zihang Guan, Junchen Liu, Yao Huang, Kerui Sun, Lele Li, Weimao Wang, Tianjiao Zheng, Quan Xiong, Jie Zhao, Yanhe Zhu\",\"doi\":\"10.3390/biomimetics10090607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prolonged load carriage with ordinary backpacks (OBs) can cause muscle fatigue and skeletal injuries. Research indicates that suspended backpacks can effectively reduce energy expenditure; however, existing elastic rope-based suspension backpacks struggle to adapt to different speeds, while active suspension backpacks gain significant additional weight due to the incorporated motors and batteries. This paper presents a novel cam-based constant-force suspension backpack (CCSB). The CCSB employs a cam-spring mechanism with near-zero suspension stiffness to minimize the inertial forces generated by load oscillations. A test platform was constructed to evaluate the constant-force performance of the mechanism, showing a maximum error of less than 1.96%. Load-carrying experiments were conducted at different walking speeds. Laboratory test results show that, compared with OBs, the CCSB reduces peak accelerative vertical force by an average of 84.47% and reduces human metabolic costs by 10.58%. Outdoor tests show that the CCSB can reduce transportation consumption by 8.26%. The CCSB's compact structure makes it more suitable for commercialization and demonstrates significant potential for practical applications.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090607\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090607","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Cam-Based Simple Design of Constant-Force Suspension Backpack to Isolate Dynamic Load.
Prolonged load carriage with ordinary backpacks (OBs) can cause muscle fatigue and skeletal injuries. Research indicates that suspended backpacks can effectively reduce energy expenditure; however, existing elastic rope-based suspension backpacks struggle to adapt to different speeds, while active suspension backpacks gain significant additional weight due to the incorporated motors and batteries. This paper presents a novel cam-based constant-force suspension backpack (CCSB). The CCSB employs a cam-spring mechanism with near-zero suspension stiffness to minimize the inertial forces generated by load oscillations. A test platform was constructed to evaluate the constant-force performance of the mechanism, showing a maximum error of less than 1.96%. Load-carrying experiments were conducted at different walking speeds. Laboratory test results show that, compared with OBs, the CCSB reduces peak accelerative vertical force by an average of 84.47% and reduces human metabolic costs by 10.58%. Outdoor tests show that the CCSB can reduce transportation consumption by 8.26%. The CCSB's compact structure makes it more suitable for commercialization and demonstrates significant potential for practical applications.