Pengpeng Lyu, Qiangsheng Bu, Yu Liu, Jiangping Jing, Jinfeng Hu, Lei Su, Yundi Chu
{"title":"基于改进遗传算法的有源配电网电力恢复优化策略。","authors":"Pengpeng Lyu, Qiangsheng Bu, Yu Liu, Jiangping Jing, Jinfeng Hu, Lei Su, Yundi Chu","doi":"10.3390/biomimetics10090618","DOIUrl":null,"url":null,"abstract":"<p><p>During feeder outages in the distribution network, localized power restoration using distribution resources (e.g., PVs) can ensure supply to critical loads and mitigate adverse impacts, especially when main grid support is unavailable. This study presents a power restoration strategy aiming at maximizing the restoration duration of critical loads to ensure their prioritized recovery, thereby significantly improving power system reliability. The methodology begins with load enumeration via breadth-first search (BFS) and utilizes a long short-term memory (LSTM) neural network to predict microgrid generation output. Then, an adaptive multipoint crossover genetic solving algorithm (AMCGA) is proposed, which can dynamically adjust crossover and mutation rates, enabling rapid convergence and requiring fewer parameters, thus optimizing island partitioning to prioritize critical load demands. Experimental results show that AMCGA improves convergence speed by 42.5% over the traditional genetic algorithm, resulting in longer restoration durations. Compared with other strategies that do not prioritize critical load recovery, the proposed strategy has shown superior performance in enhancing critical load restoration, optimizing island partitioning, and reducing recovery fluctuations, thereby confirming the strategy's effectiveness in maximizing restoration and improving stability.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Power Restoration Optimization Strategy for Active Distribution Networks Using Improved Genetic Algorithm.\",\"authors\":\"Pengpeng Lyu, Qiangsheng Bu, Yu Liu, Jiangping Jing, Jinfeng Hu, Lei Su, Yundi Chu\",\"doi\":\"10.3390/biomimetics10090618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During feeder outages in the distribution network, localized power restoration using distribution resources (e.g., PVs) can ensure supply to critical loads and mitigate adverse impacts, especially when main grid support is unavailable. This study presents a power restoration strategy aiming at maximizing the restoration duration of critical loads to ensure their prioritized recovery, thereby significantly improving power system reliability. The methodology begins with load enumeration via breadth-first search (BFS) and utilizes a long short-term memory (LSTM) neural network to predict microgrid generation output. Then, an adaptive multipoint crossover genetic solving algorithm (AMCGA) is proposed, which can dynamically adjust crossover and mutation rates, enabling rapid convergence and requiring fewer parameters, thus optimizing island partitioning to prioritize critical load demands. Experimental results show that AMCGA improves convergence speed by 42.5% over the traditional genetic algorithm, resulting in longer restoration durations. Compared with other strategies that do not prioritize critical load recovery, the proposed strategy has shown superior performance in enhancing critical load restoration, optimizing island partitioning, and reducing recovery fluctuations, thereby confirming the strategy's effectiveness in maximizing restoration and improving stability.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090618\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090618","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Power Restoration Optimization Strategy for Active Distribution Networks Using Improved Genetic Algorithm.
During feeder outages in the distribution network, localized power restoration using distribution resources (e.g., PVs) can ensure supply to critical loads and mitigate adverse impacts, especially when main grid support is unavailable. This study presents a power restoration strategy aiming at maximizing the restoration duration of critical loads to ensure their prioritized recovery, thereby significantly improving power system reliability. The methodology begins with load enumeration via breadth-first search (BFS) and utilizes a long short-term memory (LSTM) neural network to predict microgrid generation output. Then, an adaptive multipoint crossover genetic solving algorithm (AMCGA) is proposed, which can dynamically adjust crossover and mutation rates, enabling rapid convergence and requiring fewer parameters, thus optimizing island partitioning to prioritize critical load demands. Experimental results show that AMCGA improves convergence speed by 42.5% over the traditional genetic algorithm, resulting in longer restoration durations. Compared with other strategies that do not prioritize critical load recovery, the proposed strategy has shown superior performance in enhancing critical load restoration, optimizing island partitioning, and reducing recovery fluctuations, thereby confirming the strategy's effectiveness in maximizing restoration and improving stability.