{"title":"全局优化的多策略蜜獾算法。","authors":"Delong Guo, Huajuan Huang","doi":"10.3390/biomimetics10090581","DOIUrl":null,"url":null,"abstract":"<p><p>The Honey Badger Algorithm (HBA) is a recently proposed metaheuristic optimization algorithm inspired by the foraging behavior of honey badgers. The search mechanism of this algorithm is divided into two phases: a mining phase and a honey-seeking phase, effectively emulating the processes of exploration and exploitation within the search space. Despite its innovative approach, the Honey Badger Algorithm (HBA) faces challenges such as slow convergence rates, an imbalanced trade-off between exploration and exploitation, and a tendency to become trapped in local optima. To address these issues, we propose an enhanced version of the Honey Badger Algorithm (HBA), namely the Multi-Strategy Honey Badger Algorithm (MSHBA), which incorporates a Cubic Chaotic Mapping mechanism for population initialization. This integration aims to enhance the uniformity and diversity of the initial population distribution. In the mining and honey-seeking stages, the position of the honey badger is updated based on the best fitness value within the population. This strategy may lead to premature convergence due to population aggregation around the fittest individual. To counteract this tendency and enhance the algorithm's global optimization capability, we introduce a random search strategy. Furthermore, an elite tangential search and a differential mutation strategy are employed after three iterations without detecting a new best value in the population, thereby enhancing the algorithm's efficacy. A comprehensive performance evaluation, conducted across a suite of established benchmark functions, reveals that the MSHBA excels in 26 out of 29 IEEE CEC 2017 benchmarks. Subsequent statistical analysis corroborates the superior performance of the MSHBA. Moreover, the MSHBA has been successfully applied to four engineering design problems, highlighting its capability for addressing constrained engineering design challenges and outperforming other optimization algorithms in this domain.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467031/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Strategy Honey Badger Algorithm for Global Optimization.\",\"authors\":\"Delong Guo, Huajuan Huang\",\"doi\":\"10.3390/biomimetics10090581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Honey Badger Algorithm (HBA) is a recently proposed metaheuristic optimization algorithm inspired by the foraging behavior of honey badgers. The search mechanism of this algorithm is divided into two phases: a mining phase and a honey-seeking phase, effectively emulating the processes of exploration and exploitation within the search space. Despite its innovative approach, the Honey Badger Algorithm (HBA) faces challenges such as slow convergence rates, an imbalanced trade-off between exploration and exploitation, and a tendency to become trapped in local optima. To address these issues, we propose an enhanced version of the Honey Badger Algorithm (HBA), namely the Multi-Strategy Honey Badger Algorithm (MSHBA), which incorporates a Cubic Chaotic Mapping mechanism for population initialization. This integration aims to enhance the uniformity and diversity of the initial population distribution. In the mining and honey-seeking stages, the position of the honey badger is updated based on the best fitness value within the population. This strategy may lead to premature convergence due to population aggregation around the fittest individual. To counteract this tendency and enhance the algorithm's global optimization capability, we introduce a random search strategy. Furthermore, an elite tangential search and a differential mutation strategy are employed after three iterations without detecting a new best value in the population, thereby enhancing the algorithm's efficacy. A comprehensive performance evaluation, conducted across a suite of established benchmark functions, reveals that the MSHBA excels in 26 out of 29 IEEE CEC 2017 benchmarks. Subsequent statistical analysis corroborates the superior performance of the MSHBA. Moreover, the MSHBA has been successfully applied to four engineering design problems, highlighting its capability for addressing constrained engineering design challenges and outperforming other optimization algorithms in this domain.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467031/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090581\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090581","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Strategy Honey Badger Algorithm for Global Optimization.
The Honey Badger Algorithm (HBA) is a recently proposed metaheuristic optimization algorithm inspired by the foraging behavior of honey badgers. The search mechanism of this algorithm is divided into two phases: a mining phase and a honey-seeking phase, effectively emulating the processes of exploration and exploitation within the search space. Despite its innovative approach, the Honey Badger Algorithm (HBA) faces challenges such as slow convergence rates, an imbalanced trade-off between exploration and exploitation, and a tendency to become trapped in local optima. To address these issues, we propose an enhanced version of the Honey Badger Algorithm (HBA), namely the Multi-Strategy Honey Badger Algorithm (MSHBA), which incorporates a Cubic Chaotic Mapping mechanism for population initialization. This integration aims to enhance the uniformity and diversity of the initial population distribution. In the mining and honey-seeking stages, the position of the honey badger is updated based on the best fitness value within the population. This strategy may lead to premature convergence due to population aggregation around the fittest individual. To counteract this tendency and enhance the algorithm's global optimization capability, we introduce a random search strategy. Furthermore, an elite tangential search and a differential mutation strategy are employed after three iterations without detecting a new best value in the population, thereby enhancing the algorithm's efficacy. A comprehensive performance evaluation, conducted across a suite of established benchmark functions, reveals that the MSHBA excels in 26 out of 29 IEEE CEC 2017 benchmarks. Subsequent statistical analysis corroborates the superior performance of the MSHBA. Moreover, the MSHBA has been successfully applied to four engineering design problems, highlighting its capability for addressing constrained engineering design challenges and outperforming other optimization algorithms in this domain.