基于增强Smith预测器的混合元启发式优化变域模糊PID的无人水面船舶航向控制。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Siyu Zhan, Qiang Liu, Zhao Zhao, Shen'ao Zhang, Yaning Xu
{"title":"基于增强Smith预测器的混合元启发式优化变域模糊PID的无人水面船舶航向控制。","authors":"Siyu Zhan, Qiang Liu, Zhao Zhao, Shen'ao Zhang, Yaning Xu","doi":"10.3390/biomimetics10090611","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing deployment of unmanned surface vessels (USVs) in complex marine operations such as ocean monitoring, search and rescue, and military reconnaissance, precise heading control under environmental disturbances and system delays has become a critical challenge. This paper presents an advanced robust heading control strategy for USVs operating under these demanding conditions. The proposed approach integrates three key innovations: (1) an enhanced Smith predictor for accurate time-delay compensation, (2) a variable-universe fuzzy PID controller with self-adaptive scaling domains that dynamically adjust to error magnitude and rate of change, and (3) a hybrid metaheuristic optimization algorithm combining beetle antennae search, harmony search, and genetic algorithm (BAS-HSA-GA) for optimal parameter tuning. Through comprehensive simulations using a Nomoto first-order time-delay model under combined white noise and second-order wave disturbances, the system demonstrates superior performance with over 90% reduction in steady-state heading error and ≈30% faster settling time compared to conventional PID and single-optimization fuzzy PID methods. Field trials under sea-state 4 conditions confirm 15-25% lower tracking error in realistic operating scenarios. The controller's stability is rigorously verified through Lyapunov analysis, while comparative studies show significant improvements in S-shaped path tracking performance, achieving better IAE/ITAE metrics than DRL, ANFC, and ACO approaches. This work provides a comprehensive solution for high-precision, delay-resilient USV heading control in dynamic marine environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced Robust Heading Control for Unmanned Surface Vessels Using Hybrid Metaheuristic-Optimized Variable Universe Fuzzy PID with Enhanced Smith Predictor.\",\"authors\":\"Siyu Zhan, Qiang Liu, Zhao Zhao, Shen'ao Zhang, Yaning Xu\",\"doi\":\"10.3390/biomimetics10090611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing deployment of unmanned surface vessels (USVs) in complex marine operations such as ocean monitoring, search and rescue, and military reconnaissance, precise heading control under environmental disturbances and system delays has become a critical challenge. This paper presents an advanced robust heading control strategy for USVs operating under these demanding conditions. The proposed approach integrates three key innovations: (1) an enhanced Smith predictor for accurate time-delay compensation, (2) a variable-universe fuzzy PID controller with self-adaptive scaling domains that dynamically adjust to error magnitude and rate of change, and (3) a hybrid metaheuristic optimization algorithm combining beetle antennae search, harmony search, and genetic algorithm (BAS-HSA-GA) for optimal parameter tuning. Through comprehensive simulations using a Nomoto first-order time-delay model under combined white noise and second-order wave disturbances, the system demonstrates superior performance with over 90% reduction in steady-state heading error and ≈30% faster settling time compared to conventional PID and single-optimization fuzzy PID methods. Field trials under sea-state 4 conditions confirm 15-25% lower tracking error in realistic operating scenarios. The controller's stability is rigorously verified through Lyapunov analysis, while comparative studies show significant improvements in S-shaped path tracking performance, achieving better IAE/ITAE metrics than DRL, ANFC, and ACO approaches. This work provides a comprehensive solution for high-precision, delay-resilient USV heading control in dynamic marine environments.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090611\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090611","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着无人水面舰艇(usv)在海洋监测、搜救和军事侦察等复杂海上作战中的部署越来越多,在环境干扰和系统延迟下的精确航向控制已成为一项关键挑战。本文提出了一种先进的鲁棒航向控制策略,以适应这些苛刻的条件。该方法集成了三个关键创新:(1)用于精确时滞补偿的增强型Smith预测器,(2)具有自适应缩放域的变域模糊PID控制器,可动态调整误差大小和变化率,以及(3)结合甲壳虫天线搜索、和声搜索和遗传算法(BAS-HSA-GA)的混合元启发式优化算法,用于最优参数调整。通过在白噪声和二阶波干扰下使用Nomoto一阶时滞模型进行综合仿真,与传统PID和单优化模糊PID方法相比,该系统的稳态航向误差减小90%以上,沉降时间缩短约30%。海况4条件下的现场试验证实,在实际操作场景中,跟踪误差降低了15-25%。通过Lyapunov分析严格验证了控制器的稳定性,而对比研究表明s形路径跟踪性能有显著改善,实现了比DRL、ANFC和ACO方法更好的IAE/ITAE指标。这项工作为动态海洋环境下高精度、延迟弹性的USV航向控制提供了全面的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced Robust Heading Control for Unmanned Surface Vessels Using Hybrid Metaheuristic-Optimized Variable Universe Fuzzy PID with Enhanced Smith Predictor.

Advanced Robust Heading Control for Unmanned Surface Vessels Using Hybrid Metaheuristic-Optimized Variable Universe Fuzzy PID with Enhanced Smith Predictor.

Advanced Robust Heading Control for Unmanned Surface Vessels Using Hybrid Metaheuristic-Optimized Variable Universe Fuzzy PID with Enhanced Smith Predictor.

Advanced Robust Heading Control for Unmanned Surface Vessels Using Hybrid Metaheuristic-Optimized Variable Universe Fuzzy PID with Enhanced Smith Predictor.

With the increasing deployment of unmanned surface vessels (USVs) in complex marine operations such as ocean monitoring, search and rescue, and military reconnaissance, precise heading control under environmental disturbances and system delays has become a critical challenge. This paper presents an advanced robust heading control strategy for USVs operating under these demanding conditions. The proposed approach integrates three key innovations: (1) an enhanced Smith predictor for accurate time-delay compensation, (2) a variable-universe fuzzy PID controller with self-adaptive scaling domains that dynamically adjust to error magnitude and rate of change, and (3) a hybrid metaheuristic optimization algorithm combining beetle antennae search, harmony search, and genetic algorithm (BAS-HSA-GA) for optimal parameter tuning. Through comprehensive simulations using a Nomoto first-order time-delay model under combined white noise and second-order wave disturbances, the system demonstrates superior performance with over 90% reduction in steady-state heading error and ≈30% faster settling time compared to conventional PID and single-optimization fuzzy PID methods. Field trials under sea-state 4 conditions confirm 15-25% lower tracking error in realistic operating scenarios. The controller's stability is rigorously verified through Lyapunov analysis, while comparative studies show significant improvements in S-shaped path tracking performance, achieving better IAE/ITAE metrics than DRL, ANFC, and ACO approaches. This work provides a comprehensive solution for high-precision, delay-resilient USV heading control in dynamic marine environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信