超临界二氧化碳发泡法制备的生物启发聚乙烯醇基泡沫塑料用于大气水收集。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yingying Chen, Changjun Guo, Hao Wang, Jiabao Lu, Heng Xie, Ting Wu
{"title":"超临界二氧化碳发泡法制备的生物启发聚乙烯醇基泡沫塑料用于大气水收集。","authors":"Yingying Chen, Changjun Guo, Hao Wang, Jiabao Lu, Heng Xie, Ting Wu","doi":"10.3390/biomimetics10090599","DOIUrl":null,"url":null,"abstract":"<p><p>The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is fabricated using the supercritical carbon dioxide foaming technology. Compared to the traditional freeze-drying method, this approach significantly reduces preparation energy consumption and shortens the production cycle. Lithium chloride integration endows the foam with exceptional moisture absorption capacity, reaching 300% of its weight. Leveraging graphene's outstanding photothermal conversion properties, the foam achieves a photothermal dehydration rate of 80.7% within 80 min under 1 Sun irradiation, demonstrating a rapid water release capacity. Furthermore, the polyvinyl alcohol-based foam exhibits no performance degradation after 60 cycles, indicating remarkable stability. This technology provides a scalable, low-cost, and all-climate-applicable solution for water-scarce regions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467779/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting.\",\"authors\":\"Yingying Chen, Changjun Guo, Hao Wang, Jiabao Lu, Heng Xie, Ting Wu\",\"doi\":\"10.3390/biomimetics10090599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is fabricated using the supercritical carbon dioxide foaming technology. Compared to the traditional freeze-drying method, this approach significantly reduces preparation energy consumption and shortens the production cycle. Lithium chloride integration endows the foam with exceptional moisture absorption capacity, reaching 300% of its weight. Leveraging graphene's outstanding photothermal conversion properties, the foam achieves a photothermal dehydration rate of 80.7% within 80 min under 1 Sun irradiation, demonstrating a rapid water release capacity. Furthermore, the polyvinyl alcohol-based foam exhibits no performance degradation after 60 cycles, indicating remarkable stability. This technology provides a scalable, low-cost, and all-climate-applicable solution for water-scarce regions.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090599\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090599","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

日益加剧的淡水危机凸显了对全天候、低能耗大气集水技术的迫切需求。受鳞状突起和相互连接的通道的启发,能够有效地捕获和释放水分,聚乙烯醇基泡沫具有三维多孔结构,使用超临界二氧化碳发泡技术制造。与传统的冷冻干燥方法相比,该方法显著降低了制备能耗,缩短了生产周期。氯化锂集成赋予泡沫具有特殊的吸湿能力,达到其重量的300%。利用石墨烯出色的光热转换性能,在1次太阳照射下,泡沫在80分钟内达到80.7%的光热脱水率,显示出快速的水释放能力。此外,聚乙烯醇基泡沫在60次循环后没有表现出性能下降,表明了显著的稳定性。这项技术为缺水地区提供了一种可扩展、低成本、适用于所有气候的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting.

Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting.

Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting.

Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting.

The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is fabricated using the supercritical carbon dioxide foaming technology. Compared to the traditional freeze-drying method, this approach significantly reduces preparation energy consumption and shortens the production cycle. Lithium chloride integration endows the foam with exceptional moisture absorption capacity, reaching 300% of its weight. Leveraging graphene's outstanding photothermal conversion properties, the foam achieves a photothermal dehydration rate of 80.7% within 80 min under 1 Sun irradiation, demonstrating a rapid water release capacity. Furthermore, the polyvinyl alcohol-based foam exhibits no performance degradation after 60 cycles, indicating remarkable stability. This technology provides a scalable, low-cost, and all-climate-applicable solution for water-scarce regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信