{"title":"超临界二氧化碳发泡法制备的生物启发聚乙烯醇基泡沫塑料用于大气水收集。","authors":"Yingying Chen, Changjun Guo, Hao Wang, Jiabao Lu, Heng Xie, Ting Wu","doi":"10.3390/biomimetics10090599","DOIUrl":null,"url":null,"abstract":"<p><p>The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is fabricated using the supercritical carbon dioxide foaming technology. Compared to the traditional freeze-drying method, this approach significantly reduces preparation energy consumption and shortens the production cycle. Lithium chloride integration endows the foam with exceptional moisture absorption capacity, reaching 300% of its weight. Leveraging graphene's outstanding photothermal conversion properties, the foam achieves a photothermal dehydration rate of 80.7% within 80 min under 1 Sun irradiation, demonstrating a rapid water release capacity. Furthermore, the polyvinyl alcohol-based foam exhibits no performance degradation after 60 cycles, indicating remarkable stability. This technology provides a scalable, low-cost, and all-climate-applicable solution for water-scarce regions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467779/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting.\",\"authors\":\"Yingying Chen, Changjun Guo, Hao Wang, Jiabao Lu, Heng Xie, Ting Wu\",\"doi\":\"10.3390/biomimetics10090599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is fabricated using the supercritical carbon dioxide foaming technology. Compared to the traditional freeze-drying method, this approach significantly reduces preparation energy consumption and shortens the production cycle. Lithium chloride integration endows the foam with exceptional moisture absorption capacity, reaching 300% of its weight. Leveraging graphene's outstanding photothermal conversion properties, the foam achieves a photothermal dehydration rate of 80.7% within 80 min under 1 Sun irradiation, demonstrating a rapid water release capacity. Furthermore, the polyvinyl alcohol-based foam exhibits no performance degradation after 60 cycles, indicating remarkable stability. This technology provides a scalable, low-cost, and all-climate-applicable solution for water-scarce regions.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090599\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090599","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioinspired Polyvinyl Alcohol-Based Foam Fabricated via Supercritical Carbon Dioxide Foaming for Atmospheric Water Harvesting.
The intensifying freshwater crisis underscores the critical need for all-weather, low-energy atmospheric water harvesting technologies. Inspired by the scale-like protrusions and interconnected channels of Tillandsia leaves that enable efficient water capture and release, a polyvinyl alcohol-based foam featuring a three-dimensional porous structure is fabricated using the supercritical carbon dioxide foaming technology. Compared to the traditional freeze-drying method, this approach significantly reduces preparation energy consumption and shortens the production cycle. Lithium chloride integration endows the foam with exceptional moisture absorption capacity, reaching 300% of its weight. Leveraging graphene's outstanding photothermal conversion properties, the foam achieves a photothermal dehydration rate of 80.7% within 80 min under 1 Sun irradiation, demonstrating a rapid water release capacity. Furthermore, the polyvinyl alcohol-based foam exhibits no performance degradation after 60 cycles, indicating remarkable stability. This technology provides a scalable, low-cost, and all-climate-applicable solution for water-scarce regions.