{"title":"一种具有自适应和全局导向机制的改进大蔗鼠算法用于解决实际工程问题。","authors":"Yepei Chen, Zhangzhi Tian, Kaifan Zhang, Feng Zhao, Aiping Zhao","doi":"10.3390/biomimetics10090612","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an improved variant of the greater cane rat algorithm (GCRA), called adaptive and global-guided greater cane rat algorithm (AGG-GCRA), which aims to alleviate some key limitations of the original GCRA regarding convergence speed, solution precision, and stability. GCRA simulates the foraging behavior of the greater cane rat during both mating and non-mating seasons, demonstrating intelligent exploration capabilities. However, the original algorithm still faces challenges such as premature convergence and inadequate local exploitation when applied to complex optimization problems. To address these issues, this paper introduces four key improvements to the GCRA: (1) a global optimum guidance term to enhance the convergence directionality; (2) a flexible parameter adjustment system designed to maintain a dynamic balance between exploration and exploitation; (3) a mechanism for retaining top-quality solutions to ensure the preservation of optimal results.; and (4) a local perturbation mechanism to help escape local optima. To comprehensively evaluate the optimization performance of AGG-GCRA, 20 separate experiments were carried out across 26 standard benchmark functions and six real-world engineering optimization problems, with comparisons made against 11 advanced metaheuristic optimization methods. The findings indicate that AGG-GCRA surpasses the competing algorithms in aspects of convergence rate, solution precision, and robustness. In the stability analysis, AGG-GCRA consistently obtained the global optimal solution in multiple runs for five engineering cases, achieving an average rank of first place and a standard deviation close to zero, highlighting its exceptional global search capabilities and excellent repeatability. Statistical tests, including the Friedman ranking and Wilcoxon signed-rank tests, provide additional validation for the effectiveness and importance of the proposed algorithm. In conclusion, AGG-GCRA provides an efficient and stable intelligent optimization tool for solving various optimization problems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467549/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Improved Greater Cane Rat Algorithm with Adaptive and Global-Guided Mechanisms for Solving Real-World Engineering Problems.\",\"authors\":\"Yepei Chen, Zhangzhi Tian, Kaifan Zhang, Feng Zhao, Aiping Zhao\",\"doi\":\"10.3390/biomimetics10090612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an improved variant of the greater cane rat algorithm (GCRA), called adaptive and global-guided greater cane rat algorithm (AGG-GCRA), which aims to alleviate some key limitations of the original GCRA regarding convergence speed, solution precision, and stability. GCRA simulates the foraging behavior of the greater cane rat during both mating and non-mating seasons, demonstrating intelligent exploration capabilities. However, the original algorithm still faces challenges such as premature convergence and inadequate local exploitation when applied to complex optimization problems. To address these issues, this paper introduces four key improvements to the GCRA: (1) a global optimum guidance term to enhance the convergence directionality; (2) a flexible parameter adjustment system designed to maintain a dynamic balance between exploration and exploitation; (3) a mechanism for retaining top-quality solutions to ensure the preservation of optimal results.; and (4) a local perturbation mechanism to help escape local optima. To comprehensively evaluate the optimization performance of AGG-GCRA, 20 separate experiments were carried out across 26 standard benchmark functions and six real-world engineering optimization problems, with comparisons made against 11 advanced metaheuristic optimization methods. The findings indicate that AGG-GCRA surpasses the competing algorithms in aspects of convergence rate, solution precision, and robustness. In the stability analysis, AGG-GCRA consistently obtained the global optimal solution in multiple runs for five engineering cases, achieving an average rank of first place and a standard deviation close to zero, highlighting its exceptional global search capabilities and excellent repeatability. Statistical tests, including the Friedman ranking and Wilcoxon signed-rank tests, provide additional validation for the effectiveness and importance of the proposed algorithm. In conclusion, AGG-GCRA provides an efficient and stable intelligent optimization tool for solving various optimization problems.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10090612\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10090612","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An Improved Greater Cane Rat Algorithm with Adaptive and Global-Guided Mechanisms for Solving Real-World Engineering Problems.
This study presents an improved variant of the greater cane rat algorithm (GCRA), called adaptive and global-guided greater cane rat algorithm (AGG-GCRA), which aims to alleviate some key limitations of the original GCRA regarding convergence speed, solution precision, and stability. GCRA simulates the foraging behavior of the greater cane rat during both mating and non-mating seasons, demonstrating intelligent exploration capabilities. However, the original algorithm still faces challenges such as premature convergence and inadequate local exploitation when applied to complex optimization problems. To address these issues, this paper introduces four key improvements to the GCRA: (1) a global optimum guidance term to enhance the convergence directionality; (2) a flexible parameter adjustment system designed to maintain a dynamic balance between exploration and exploitation; (3) a mechanism for retaining top-quality solutions to ensure the preservation of optimal results.; and (4) a local perturbation mechanism to help escape local optima. To comprehensively evaluate the optimization performance of AGG-GCRA, 20 separate experiments were carried out across 26 standard benchmark functions and six real-world engineering optimization problems, with comparisons made against 11 advanced metaheuristic optimization methods. The findings indicate that AGG-GCRA surpasses the competing algorithms in aspects of convergence rate, solution precision, and robustness. In the stability analysis, AGG-GCRA consistently obtained the global optimal solution in multiple runs for five engineering cases, achieving an average rank of first place and a standard deviation close to zero, highlighting its exceptional global search capabilities and excellent repeatability. Statistical tests, including the Friedman ranking and Wilcoxon signed-rank tests, provide additional validation for the effectiveness and importance of the proposed algorithm. In conclusion, AGG-GCRA provides an efficient and stable intelligent optimization tool for solving various optimization problems.