Yiming Li, Junling Ma, Yucong Ye, Zongli Yao, Pengcheng Gao, Kai Zhou, Yunlong Zhao, Qifang Lai
{"title":"急性碱性应激激活日本沼虾葡萄糖代谢供能并诱导免疫应答。","authors":"Yiming Li, Junling Ma, Yucong Ye, Zongli Yao, Pengcheng Gao, Kai Zhou, Yunlong Zhao, Qifang Lai","doi":"10.1007/s10126-025-10522-0","DOIUrl":null,"url":null,"abstract":"<div><p>Using vacant saline-alkali land for aquaculture has the advantages of resource utilization and significant economic and ecological benefits, but there is a need to understand the impact of variable alkalinity on aquacultural species. This study investigated the impact of different alkaline stress conditions (10 and 20 mmol/L) on transcription and changes in intestinal microbial communities in the oriental river prawn, <i>Macrobrachium nipponense</i>, over a 96-h period. Under low alkalinity conditions, pathways related to carbohydrate metabolism were activated, including glycolysis/gluconeogenesis, mannose metabolism, ascorbate and aldarate metabolism, carbohydrate binding, chitinase activity, and lysosome. Such conditions also led to an increase in the number of beneficial intestinal bacteria, such as <i>Proteobacteria</i>, <i>Firmicutes</i>, <i>Actinobacteriota</i>, and <i>Acidobacteriota.</i> However, high-alkaline conditions inhibited the fibroblast growth factor receptor signaling pathway, store-operated calcium channel activity, and MAPK signaling pathway, and significantly increased the number of pathogenic intestinal bacteria, such as <i>Citrobacter</i>. These results suggest that low alkalinity would promote the growth of <i>M. nipponense</i> by activating the glycolysis pathway and increasing the number of beneficial bacteria. By contrast, high alkalinity would inhibit their immune performance by affecting key signal transduction pathways and increasing harmful bacteria in the intestinal tract. Such insights provide a theoretical basis for the subsequent adaptive aquaculture of <i>M. nipponense</i> in saline-alkali areas.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute Alkaline Stress Activates Glucose Metabolism for Energy Supply and Induces the Immune Response in the Oriental River Prawn, Macrobrachium nipponense\",\"authors\":\"Yiming Li, Junling Ma, Yucong Ye, Zongli Yao, Pengcheng Gao, Kai Zhou, Yunlong Zhao, Qifang Lai\",\"doi\":\"10.1007/s10126-025-10522-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using vacant saline-alkali land for aquaculture has the advantages of resource utilization and significant economic and ecological benefits, but there is a need to understand the impact of variable alkalinity on aquacultural species. This study investigated the impact of different alkaline stress conditions (10 and 20 mmol/L) on transcription and changes in intestinal microbial communities in the oriental river prawn, <i>Macrobrachium nipponense</i>, over a 96-h period. Under low alkalinity conditions, pathways related to carbohydrate metabolism were activated, including glycolysis/gluconeogenesis, mannose metabolism, ascorbate and aldarate metabolism, carbohydrate binding, chitinase activity, and lysosome. Such conditions also led to an increase in the number of beneficial intestinal bacteria, such as <i>Proteobacteria</i>, <i>Firmicutes</i>, <i>Actinobacteriota</i>, and <i>Acidobacteriota.</i> However, high-alkaline conditions inhibited the fibroblast growth factor receptor signaling pathway, store-operated calcium channel activity, and MAPK signaling pathway, and significantly increased the number of pathogenic intestinal bacteria, such as <i>Citrobacter</i>. These results suggest that low alkalinity would promote the growth of <i>M. nipponense</i> by activating the glycolysis pathway and increasing the number of beneficial bacteria. By contrast, high alkalinity would inhibit their immune performance by affecting key signal transduction pathways and increasing harmful bacteria in the intestinal tract. Such insights provide a theoretical basis for the subsequent adaptive aquaculture of <i>M. nipponense</i> in saline-alkali areas.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-025-10522-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-025-10522-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Acute Alkaline Stress Activates Glucose Metabolism for Energy Supply and Induces the Immune Response in the Oriental River Prawn, Macrobrachium nipponense
Using vacant saline-alkali land for aquaculture has the advantages of resource utilization and significant economic and ecological benefits, but there is a need to understand the impact of variable alkalinity on aquacultural species. This study investigated the impact of different alkaline stress conditions (10 and 20 mmol/L) on transcription and changes in intestinal microbial communities in the oriental river prawn, Macrobrachium nipponense, over a 96-h period. Under low alkalinity conditions, pathways related to carbohydrate metabolism were activated, including glycolysis/gluconeogenesis, mannose metabolism, ascorbate and aldarate metabolism, carbohydrate binding, chitinase activity, and lysosome. Such conditions also led to an increase in the number of beneficial intestinal bacteria, such as Proteobacteria, Firmicutes, Actinobacteriota, and Acidobacteriota. However, high-alkaline conditions inhibited the fibroblast growth factor receptor signaling pathway, store-operated calcium channel activity, and MAPK signaling pathway, and significantly increased the number of pathogenic intestinal bacteria, such as Citrobacter. These results suggest that low alkalinity would promote the growth of M. nipponense by activating the glycolysis pathway and increasing the number of beneficial bacteria. By contrast, high alkalinity would inhibit their immune performance by affecting key signal transduction pathways and increasing harmful bacteria in the intestinal tract. Such insights provide a theoretical basis for the subsequent adaptive aquaculture of M. nipponense in saline-alkali areas.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.