利用CRISPR-Cas9工程报告噬菌体T7:: Nluc和微流控芯片平台快速检测血流感染中的大肠杆菌。

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Minwei Li, Zhiyun Hao, Jing Yan, Ximeng Chen, Hangyi Li, Chengbin Wang, Chi Wang
{"title":"利用CRISPR-Cas9工程报告噬菌体T7:: Nluc和微流控芯片平台快速检测血流感染中的大肠杆菌。","authors":"Minwei Li, Zhiyun Hao, Jing Yan, Ximeng Chen, Hangyi Li, Chengbin Wang, Chi Wang","doi":"10.3724/abbs.2025150","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid identification of pathogens responsible for bloodstream infection is critical for early intervention and effective treatment. Reporter phages, which are known for their exceptional sensitivity and specificity in pathogen detection, have garnered significant interest. In this study, we systematically evaluate phage genome editing strategies that combine homologous recombination with the CRISPR-Cas9 system. We investigate the impacts of homologous arm length, sgRNA activity, target site, and plasmid interactions on editing efficiency. Our results demonstrate that successful genome editing depends on both sufficient cleavage pressure and optimal homologous arm length, particularly when using low-activity sgRNAs. On the basis of these findings, we develop a highly efficient gene editing strategy TPMSR (triple-plasmid-mediated synchronous recombination) that overcomes the limitations of conventional methods that rely on high-activity sgRNA and restricted editing sites. Using the TPMSR strategy, we integrate the <i>Nluc</i> gene into phage T7, generating the reporter phage T7:: <i>Nluc</i>, which is then incorporated into a microfluidic chip. Validation with 51 clinical isolates demonstrates outstanding sensitivity, specificity, and accuracy in detecting <i>E</i>. <i>coli</i> in blood within 1.5 h at concentrations less than 30 CFU/mL. This study presents a robust strategy for phage genome engineering and develops a promising method for the rapid diagnosis of bloodstream infections caused by Escherichia coli.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detection of <i>Escherichia coli</i> in bloodstream infection via CRISPR-Cas9 engineered reporter phage T7:: <i>Nluc</i> and microfluidic chip platform.\",\"authors\":\"Minwei Li, Zhiyun Hao, Jing Yan, Ximeng Chen, Hangyi Li, Chengbin Wang, Chi Wang\",\"doi\":\"10.3724/abbs.2025150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid identification of pathogens responsible for bloodstream infection is critical for early intervention and effective treatment. Reporter phages, which are known for their exceptional sensitivity and specificity in pathogen detection, have garnered significant interest. In this study, we systematically evaluate phage genome editing strategies that combine homologous recombination with the CRISPR-Cas9 system. We investigate the impacts of homologous arm length, sgRNA activity, target site, and plasmid interactions on editing efficiency. Our results demonstrate that successful genome editing depends on both sufficient cleavage pressure and optimal homologous arm length, particularly when using low-activity sgRNAs. On the basis of these findings, we develop a highly efficient gene editing strategy TPMSR (triple-plasmid-mediated synchronous recombination) that overcomes the limitations of conventional methods that rely on high-activity sgRNA and restricted editing sites. Using the TPMSR strategy, we integrate the <i>Nluc</i> gene into phage T7, generating the reporter phage T7:: <i>Nluc</i>, which is then incorporated into a microfluidic chip. Validation with 51 clinical isolates demonstrates outstanding sensitivity, specificity, and accuracy in detecting <i>E</i>. <i>coli</i> in blood within 1.5 h at concentrations less than 30 CFU/mL. This study presents a robust strategy for phage genome engineering and develops a promising method for the rapid diagnosis of bloodstream infections caused by Escherichia coli.</p>\",\"PeriodicalId\":6978,\"journal\":{\"name\":\"Acta biochimica et biophysica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biochimica et biophysica Sinica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3724/abbs.2025150\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2025150","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

快速识别导致血液感染的病原体对于早期干预和有效治疗至关重要。报告噬菌体以其在病原体检测中的特殊敏感性和特异性而闻名,已经引起了人们的极大兴趣。在本研究中,我们系统地评估了将同源重组与CRISPR-Cas9系统相结合的噬菌体基因组编辑策略。我们研究了同源臂长、sgRNA活性、靶位点和质粒相互作用对编辑效率的影响。我们的研究结果表明,成功的基因组编辑依赖于足够的裂解压力和最佳的同源臂长,特别是当使用低活性sgrna时。基于这些发现,我们开发了一种高效的基因编辑策略TPMSR(三重质粒介导的同步重组),克服了依赖高活性sgRNA和限制性编辑位点的传统方法的局限性。利用TPMSR策略,我们将Nluc基因整合到噬菌体T7中,生成报告噬菌体T7:: Nluc,然后将其整合到微流控芯片中。对51个临床分离株的验证表明,在浓度低于30 CFU/mL的情况下,在1.5小时内检测血液中的大肠杆菌具有出色的敏感性、特异性和准确性。本研究为噬菌体基因组工程提供了一个强有力的策略,并为大肠杆菌引起的血液感染的快速诊断开发了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid detection of Escherichia coli in bloodstream infection via CRISPR-Cas9 engineered reporter phage T7:: Nluc and microfluidic chip platform.

Rapid identification of pathogens responsible for bloodstream infection is critical for early intervention and effective treatment. Reporter phages, which are known for their exceptional sensitivity and specificity in pathogen detection, have garnered significant interest. In this study, we systematically evaluate phage genome editing strategies that combine homologous recombination with the CRISPR-Cas9 system. We investigate the impacts of homologous arm length, sgRNA activity, target site, and plasmid interactions on editing efficiency. Our results demonstrate that successful genome editing depends on both sufficient cleavage pressure and optimal homologous arm length, particularly when using low-activity sgRNAs. On the basis of these findings, we develop a highly efficient gene editing strategy TPMSR (triple-plasmid-mediated synchronous recombination) that overcomes the limitations of conventional methods that rely on high-activity sgRNA and restricted editing sites. Using the TPMSR strategy, we integrate the Nluc gene into phage T7, generating the reporter phage T7:: Nluc, which is then incorporated into a microfluidic chip. Validation with 51 clinical isolates demonstrates outstanding sensitivity, specificity, and accuracy in detecting E. coli in blood within 1.5 h at concentrations less than 30 CFU/mL. This study presents a robust strategy for phage genome engineering and develops a promising method for the rapid diagnosis of bloodstream infections caused by Escherichia coli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta biochimica et biophysica Sinica
Acta biochimica et biophysica Sinica 生物-生化与分子生物学
CiteScore
5.00
自引率
5.40%
发文量
170
审稿时长
3 months
期刊介绍: Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信