人类21三体肺发育的转录景观。

IF 5.3 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Soumyaroop Bhattacharya, Andrew Frauenpreis, Caroline Cherry, Gail Deutsch, Ian A Glass, Thomas J Mariani, Denise Al Alam, Soula Danopoulos
{"title":"人类21三体肺发育的转录景观。","authors":"Soumyaroop Bhattacharya, Andrew Frauenpreis, Caroline Cherry, Gail Deutsch, Ian A Glass, Thomas J Mariani, Denise Al Alam, Soula Danopoulos","doi":"10.1165/rcmb.2025-0217OC","DOIUrl":null,"url":null,"abstract":"<p><p>Trisomy 21 (T21), resulting in Down Syndrome (DS), is the most prevalent chromosomal abnormality worldwide. While pulmonary disease is a major cause of morbidity and mortality in DS, the ontogeny of pulmonary complications remains poorly understood. We recently demonstrated that T21 lung anomalies, including airway branching and vascular lymphatic abnormalities, are initiated <i>in utero</i>. Here, we aimed to describe molecular changes at the single cell level in prenatal T21 lungs. Single cell RNA sequencing (scRNAseq) was used to generate transcriptomic profiles of individual human lung cells in tissue obtained from T21 (n=5) and non-T21 (n=4) prenatal lungs. Clustering of cells, marker identification, UMAP representation, and differential expression analysis were performed in Seurat. Cell type annotation and pathway analysis were annotated using Toppfun and a human fetal lung cell atlas. Spatial differences in cellular phenotypes were validated using immunofluorescent staining (IF) and fluorescent in situ hybridization (FISH). Our results detail changes in gene expression at the time of initiation of histopathological abnormalities in T21 prenatal lungs. Notably, we identify precocious differentiation of epithelial cells, widespread induction of key extracellular matrix molecules in mesenchymal cells and hyper-activation of IFN signaling in endothelial cells. This single cell dataset of T21 lungs greatly expands our understanding of antecedents to pulmonary complications and should facilitate efforts to mitigate respiratory disease in DS.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Transcriptional Landscape of Developing Human Trisomy 21 Lungs.\",\"authors\":\"Soumyaroop Bhattacharya, Andrew Frauenpreis, Caroline Cherry, Gail Deutsch, Ian A Glass, Thomas J Mariani, Denise Al Alam, Soula Danopoulos\",\"doi\":\"10.1165/rcmb.2025-0217OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trisomy 21 (T21), resulting in Down Syndrome (DS), is the most prevalent chromosomal abnormality worldwide. While pulmonary disease is a major cause of morbidity and mortality in DS, the ontogeny of pulmonary complications remains poorly understood. We recently demonstrated that T21 lung anomalies, including airway branching and vascular lymphatic abnormalities, are initiated <i>in utero</i>. Here, we aimed to describe molecular changes at the single cell level in prenatal T21 lungs. Single cell RNA sequencing (scRNAseq) was used to generate transcriptomic profiles of individual human lung cells in tissue obtained from T21 (n=5) and non-T21 (n=4) prenatal lungs. Clustering of cells, marker identification, UMAP representation, and differential expression analysis were performed in Seurat. Cell type annotation and pathway analysis were annotated using Toppfun and a human fetal lung cell atlas. Spatial differences in cellular phenotypes were validated using immunofluorescent staining (IF) and fluorescent in situ hybridization (FISH). Our results detail changes in gene expression at the time of initiation of histopathological abnormalities in T21 prenatal lungs. Notably, we identify precocious differentiation of epithelial cells, widespread induction of key extracellular matrix molecules in mesenchymal cells and hyper-activation of IFN signaling in endothelial cells. This single cell dataset of T21 lungs greatly expands our understanding of antecedents to pulmonary complications and should facilitate efforts to mitigate respiratory disease in DS.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2025-0217OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2025-0217OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

21三体(T21),导致唐氏综合症(DS),是世界上最普遍的染色体异常。虽然肺部疾病是退行性肺病发病率和死亡率的主要原因,但肺部并发症的发生机制仍然知之甚少。我们最近证明T21肺异常,包括气道分支和血管淋巴异常,是在子宫内开始的。在这里,我们旨在描述单细胞水平的分子变化在产前T21肺。单细胞RNA测序(scRNAseq)用于生成T21 (n=5)和非T21 (n=4)产前肺组织中单个人肺细胞的转录组学图谱。在Seurat中进行细胞聚类、标记识别、UMAP表示和差异表达分析。细胞类型注释和通路分析使用Toppfun和人胎儿肺细胞图谱进行注释。利用免疫荧光染色(IF)和荧光原位杂交(FISH)验证细胞表型的空间差异。我们的结果详细说明了T21产前肺部组织病理异常开始时基因表达的变化。值得注意的是,我们发现了上皮细胞的早熟分化,间充质细胞中关键细胞外基质分子的广泛诱导以及内皮细胞中IFN信号的过度激活。T21肺的单细胞数据集极大地扩展了我们对肺部并发症前因的理解,并有助于减轻DS的呼吸系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Transcriptional Landscape of Developing Human Trisomy 21 Lungs.

Trisomy 21 (T21), resulting in Down Syndrome (DS), is the most prevalent chromosomal abnormality worldwide. While pulmonary disease is a major cause of morbidity and mortality in DS, the ontogeny of pulmonary complications remains poorly understood. We recently demonstrated that T21 lung anomalies, including airway branching and vascular lymphatic abnormalities, are initiated in utero. Here, we aimed to describe molecular changes at the single cell level in prenatal T21 lungs. Single cell RNA sequencing (scRNAseq) was used to generate transcriptomic profiles of individual human lung cells in tissue obtained from T21 (n=5) and non-T21 (n=4) prenatal lungs. Clustering of cells, marker identification, UMAP representation, and differential expression analysis were performed in Seurat. Cell type annotation and pathway analysis were annotated using Toppfun and a human fetal lung cell atlas. Spatial differences in cellular phenotypes were validated using immunofluorescent staining (IF) and fluorescent in situ hybridization (FISH). Our results detail changes in gene expression at the time of initiation of histopathological abnormalities in T21 prenatal lungs. Notably, we identify precocious differentiation of epithelial cells, widespread induction of key extracellular matrix molecules in mesenchymal cells and hyper-activation of IFN signaling in endothelial cells. This single cell dataset of T21 lungs greatly expands our understanding of antecedents to pulmonary complications and should facilitate efforts to mitigate respiratory disease in DS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信