{"title":"对miR-290和miR-302集群在iPSC重编程中的作用的关键见解。","authors":"Shan Tao, Xianghui Zhang, Chengqiang Jin","doi":"10.1093/stmcls/sxaf045","DOIUrl":null,"url":null,"abstract":"<p><p>The study by Ye et al., published in Stem Cells, represents a significant advancement in the field of cellular reprogramming and pluripotency. The authors meticulously investigate the essential roles of the miR-290 and miR-302 microRNA clusters in the reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs). This work is distinguished by its comprehensive experimental design and rigorous methodology, providing novel insights into the molecular mechanisms underlying iPSC formation.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":"43 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical insights into the role of miR-290 and miR-302 clusters in iPSC reprogramming.\",\"authors\":\"Shan Tao, Xianghui Zhang, Chengqiang Jin\",\"doi\":\"10.1093/stmcls/sxaf045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study by Ye et al., published in Stem Cells, represents a significant advancement in the field of cellular reprogramming and pluripotency. The authors meticulously investigate the essential roles of the miR-290 and miR-302 microRNA clusters in the reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs). This work is distinguished by its comprehensive experimental design and rigorous methodology, providing novel insights into the molecular mechanisms underlying iPSC formation.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\"43 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxaf045\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Critical insights into the role of miR-290 and miR-302 clusters in iPSC reprogramming.
The study by Ye et al., published in Stem Cells, represents a significant advancement in the field of cellular reprogramming and pluripotency. The authors meticulously investigate the essential roles of the miR-290 and miR-302 microRNA clusters in the reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs). This work is distinguished by its comprehensive experimental design and rigorous methodology, providing novel insights into the molecular mechanisms underlying iPSC formation.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.