图形处理单元上的加速半经验激发态计算。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Vishikh Athavale*, , , Nikita Fedik, , , William Colglazier, , , Anders M. N. Niklasson, , , Maksim Kulichenko, , and , Sergei Tretiak, 
{"title":"图形处理单元上的加速半经验激发态计算。","authors":"Vishikh Athavale*,&nbsp;, ,&nbsp;Nikita Fedik,&nbsp;, ,&nbsp;William Colglazier,&nbsp;, ,&nbsp;Anders M. N. Niklasson,&nbsp;, ,&nbsp;Maksim Kulichenko,&nbsp;, and ,&nbsp;Sergei Tretiak,&nbsp;","doi":"10.1021/acs.jctc.5c00980","DOIUrl":null,"url":null,"abstract":"<p >We report the development and implementation of electronic excited-state capabilities for semiempirical quantum chemical methods at both the Configuration Interaction Singles and Time-Dependent Hartree–Fock levels of theory, integrated within the PYSEQM 2.0 software package (https://github.com/lanl/PYSEQM). PYSEQM is a Python-based package designed for efficient and scalable quantum chemical simulations. Leveraging the PyTorch framework enables PYSEQM to benefit from automatic differentiation and GPU acceleration, leading to substantial performance gains in molecular property evaluations. In particular, our implementation enables efficient calculation of excited-state properties for large molecular systems. Benchmarking on systems with up to a thousand atoms demonstrates that excited-state computations can be completed in under a minute on modern GPUs, making this approach particularly suitable for high-throughput screening, real-time feedback in interactive simulations, and large-scale dynamical studies. Additionally, PYSEQM includes a machine learning interface that supports Hamiltonian parameter reoptimization and neural network training. These capabilities open new avenues for data-driven excited-state dynamics simulations, offering a path toward combining quantum chemical rigor with machine learning efficiency. Overall, this work facilitates access to excited-state quantum chemistry for large systems, while laying the foundation for future hybrid quantum-machine-learning approaches in photochemistry, photophysics, and materials discovery.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 19","pages":"9498–9510"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PYSEQM 2.0: Accelerated Semiempirical Excited-State Calculations on Graphical Processing Units\",\"authors\":\"Vishikh Athavale*,&nbsp;, ,&nbsp;Nikita Fedik,&nbsp;, ,&nbsp;William Colglazier,&nbsp;, ,&nbsp;Anders M. N. Niklasson,&nbsp;, ,&nbsp;Maksim Kulichenko,&nbsp;, and ,&nbsp;Sergei Tretiak,&nbsp;\",\"doi\":\"10.1021/acs.jctc.5c00980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the development and implementation of electronic excited-state capabilities for semiempirical quantum chemical methods at both the Configuration Interaction Singles and Time-Dependent Hartree–Fock levels of theory, integrated within the PYSEQM 2.0 software package (https://github.com/lanl/PYSEQM). PYSEQM is a Python-based package designed for efficient and scalable quantum chemical simulations. Leveraging the PyTorch framework enables PYSEQM to benefit from automatic differentiation and GPU acceleration, leading to substantial performance gains in molecular property evaluations. In particular, our implementation enables efficient calculation of excited-state properties for large molecular systems. Benchmarking on systems with up to a thousand atoms demonstrates that excited-state computations can be completed in under a minute on modern GPUs, making this approach particularly suitable for high-throughput screening, real-time feedback in interactive simulations, and large-scale dynamical studies. Additionally, PYSEQM includes a machine learning interface that supports Hamiltonian parameter reoptimization and neural network training. These capabilities open new avenues for data-driven excited-state dynamics simulations, offering a path toward combining quantum chemical rigor with machine learning efficiency. Overall, this work facilitates access to excited-state quantum chemistry for large systems, while laying the foundation for future hybrid quantum-machine-learning approaches in photochemistry, photophysics, and materials discovery.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"21 19\",\"pages\":\"9498–9510\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00980\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00980","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了半经验量子化学方法的电子激发态能力在配置相互作用单和时间依赖hartrei - fock理论水平上的发展和实现,集成在PYSEQM 2.0软件包中(https://github.com/lanl/PYSEQM)。PYSEQM是一个基于python的包,设计用于高效和可扩展的量子化学模拟。利用PyTorch框架使PYSEQM能够从自动区分和GPU加速中受益,从而在分子特性评估中获得可观的性能提升。特别是,我们的实现能够有效地计算大分子系统的激发态性质。对多达一千个原子的系统进行基准测试表明,在现代gpu上,激发态计算可以在一分钟内完成,这使得这种方法特别适合于高通量筛选、交互式模拟中的实时反馈和大规模动态研究。此外,PYSEQM包括一个机器学习接口,支持哈密顿参数再优化和神经网络训练。这些功能为数据驱动的激发态动力学模拟开辟了新的途径,为将量子化学的严谨性与机器学习的效率相结合提供了一条途径。总的来说,这项工作促进了对大型系统的激发态量子化学的访问,同时为未来在光化学、光物理和材料发现方面的混合量子机器学习方法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PYSEQM 2.0: Accelerated Semiempirical Excited-State Calculations on Graphical Processing Units

PYSEQM 2.0: Accelerated Semiempirical Excited-State Calculations on Graphical Processing Units

PYSEQM 2.0: Accelerated Semiempirical Excited-State Calculations on Graphical Processing Units

We report the development and implementation of electronic excited-state capabilities for semiempirical quantum chemical methods at both the Configuration Interaction Singles and Time-Dependent Hartree–Fock levels of theory, integrated within the PYSEQM 2.0 software package (https://github.com/lanl/PYSEQM). PYSEQM is a Python-based package designed for efficient and scalable quantum chemical simulations. Leveraging the PyTorch framework enables PYSEQM to benefit from automatic differentiation and GPU acceleration, leading to substantial performance gains in molecular property evaluations. In particular, our implementation enables efficient calculation of excited-state properties for large molecular systems. Benchmarking on systems with up to a thousand atoms demonstrates that excited-state computations can be completed in under a minute on modern GPUs, making this approach particularly suitable for high-throughput screening, real-time feedback in interactive simulations, and large-scale dynamical studies. Additionally, PYSEQM includes a machine learning interface that supports Hamiltonian parameter reoptimization and neural network training. These capabilities open new avenues for data-driven excited-state dynamics simulations, offering a path toward combining quantum chemical rigor with machine learning efficiency. Overall, this work facilitates access to excited-state quantum chemistry for large systems, while laying the foundation for future hybrid quantum-machine-learning approaches in photochemistry, photophysics, and materials discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信