新兴的选择性离子输运通过二维受限空间的分离和能源技术的创新。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bin Zhao, , , Haoren Liu, , , Yuying Hao, , , Min Zhao*, , and , Kai-Ge Zhou*, 
{"title":"新兴的选择性离子输运通过二维受限空间的分离和能源技术的创新。","authors":"Bin Zhao,&nbsp;, ,&nbsp;Haoren Liu,&nbsp;, ,&nbsp;Yuying Hao,&nbsp;, ,&nbsp;Min Zhao*,&nbsp;, and ,&nbsp;Kai-Ge Zhou*,&nbsp;","doi":"10.1021/acsami.5c12748","DOIUrl":null,"url":null,"abstract":"<p >Ion transport technology is pivotal in energy and environmental applications, yet traditional bulk materials, such as ion exchange membranes (IEMs) and porous ceramics, face limitations in selectivity, mechanical stability, and adaptability under dynamic conditions. Two-dimensional (2D) materials, including graphene oxide (GO), MXene, and covalent organic frameworks (COFs), offer transformative potential due to their tunable nanochannels, surface chemistry, and confinement effects. However, challenges persist in long-term structural stability, selectivity decay in complex environments, and scalable fabrication, alongside an insufficient mechanistic understanding of ion-material interactions under nanoconfinement. This review systematically analyzes ion transport mechanisms in 2D nanochannels, focusing on material design strategies (e.g., layer spacing regulation, heterostructures, and external field modulation), performance optimization, and applications in membrane separation, osmotic energy harvesting, energy storage, and sensing. Key findings reveal that 2D materials enhance ion selectivity via size exclusion, charge regulation, and solvation modification, while photothermal synergy, voltage-controlled pores, and dynamic hydrogen-bond networks enable breakthroughs in efficiency and adaptability. For instance, MXene/metal–organic framework (MOF) composites achieve osmotic power densities up to 8.29 W/m<sup>2</sup> and COF membranes attain Li<sup>+</sup>/Mg<sup>2+</sup> selectivity of 190. The integration of machine learning and advanced simulations is highlighted for future mechanistic exploration. This work provides critical insights into designing high-performance, intelligent ion transport systems, bridging fundamental research with practical applications in desalination, energy conversion, and biomedicine, thereby advancing the development of next-generation membrane technologies.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 40","pages":"55751–55780"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Selective Ion Transport via 2D Confined Space for the Innovations in Separation and Energy Technologies\",\"authors\":\"Bin Zhao,&nbsp;, ,&nbsp;Haoren Liu,&nbsp;, ,&nbsp;Yuying Hao,&nbsp;, ,&nbsp;Min Zhao*,&nbsp;, and ,&nbsp;Kai-Ge Zhou*,&nbsp;\",\"doi\":\"10.1021/acsami.5c12748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ion transport technology is pivotal in energy and environmental applications, yet traditional bulk materials, such as ion exchange membranes (IEMs) and porous ceramics, face limitations in selectivity, mechanical stability, and adaptability under dynamic conditions. Two-dimensional (2D) materials, including graphene oxide (GO), MXene, and covalent organic frameworks (COFs), offer transformative potential due to their tunable nanochannels, surface chemistry, and confinement effects. However, challenges persist in long-term structural stability, selectivity decay in complex environments, and scalable fabrication, alongside an insufficient mechanistic understanding of ion-material interactions under nanoconfinement. This review systematically analyzes ion transport mechanisms in 2D nanochannels, focusing on material design strategies (e.g., layer spacing regulation, heterostructures, and external field modulation), performance optimization, and applications in membrane separation, osmotic energy harvesting, energy storage, and sensing. Key findings reveal that 2D materials enhance ion selectivity via size exclusion, charge regulation, and solvation modification, while photothermal synergy, voltage-controlled pores, and dynamic hydrogen-bond networks enable breakthroughs in efficiency and adaptability. For instance, MXene/metal–organic framework (MOF) composites achieve osmotic power densities up to 8.29 W/m<sup>2</sup> and COF membranes attain Li<sup>+</sup>/Mg<sup>2+</sup> selectivity of 190. The integration of machine learning and advanced simulations is highlighted for future mechanistic exploration. This work provides critical insights into designing high-performance, intelligent ion transport systems, bridging fundamental research with practical applications in desalination, energy conversion, and biomedicine, thereby advancing the development of next-generation membrane technologies.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 40\",\"pages\":\"55751–55780\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c12748\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c12748","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子传输技术在能源和环境应用中至关重要,但传统的大块材料,如离子交换膜(IEMs)和多孔陶瓷,在选择性、机械稳定性和动态条件下的适应性方面存在局限性。二维(2D)材料,包括氧化石墨烯(GO)、MXene和共价有机框架(COFs),由于其可调谐的纳米通道、表面化学和约束效应,提供了变革潜力。然而,长期的结构稳定性、复杂环境下的选择性衰减、可扩展的制造以及对纳米约束下离子材料相互作用的机制理解不足等方面的挑战仍然存在。本文系统分析了二维纳米通道中的离子传输机制,重点介绍了材料设计策略(如层间距调节、异质结构和外场调制)、性能优化以及在膜分离、渗透能量收集、能量存储和传感方面的应用。关键发现表明,二维材料通过尺寸排斥、电荷调节和溶剂化修饰增强离子选择性,而光热协同作用、电压控制孔隙和动态氢键网络使效率和适应性取得突破。例如,MXene/金属有机骨架(MOF)复合材料的渗透功率密度高达8.29 W/m2, COF膜的Li+/Mg2+选择性为190。机器学习和高级模拟的集成是未来机械探索的重点。这项工作为设计高性能、智能离子传输系统提供了重要的见解,将基础研究与脱盐、能量转换和生物医学的实际应用联系起来,从而推动了下一代膜技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emerging Selective Ion Transport via 2D Confined Space for the Innovations in Separation and Energy Technologies

Emerging Selective Ion Transport via 2D Confined Space for the Innovations in Separation and Energy Technologies

Ion transport technology is pivotal in energy and environmental applications, yet traditional bulk materials, such as ion exchange membranes (IEMs) and porous ceramics, face limitations in selectivity, mechanical stability, and adaptability under dynamic conditions. Two-dimensional (2D) materials, including graphene oxide (GO), MXene, and covalent organic frameworks (COFs), offer transformative potential due to their tunable nanochannels, surface chemistry, and confinement effects. However, challenges persist in long-term structural stability, selectivity decay in complex environments, and scalable fabrication, alongside an insufficient mechanistic understanding of ion-material interactions under nanoconfinement. This review systematically analyzes ion transport mechanisms in 2D nanochannels, focusing on material design strategies (e.g., layer spacing regulation, heterostructures, and external field modulation), performance optimization, and applications in membrane separation, osmotic energy harvesting, energy storage, and sensing. Key findings reveal that 2D materials enhance ion selectivity via size exclusion, charge regulation, and solvation modification, while photothermal synergy, voltage-controlled pores, and dynamic hydrogen-bond networks enable breakthroughs in efficiency and adaptability. For instance, MXene/metal–organic framework (MOF) composites achieve osmotic power densities up to 8.29 W/m2 and COF membranes attain Li+/Mg2+ selectivity of 190. The integration of machine learning and advanced simulations is highlighted for future mechanistic exploration. This work provides critical insights into designing high-performance, intelligent ion transport systems, bridging fundamental research with practical applications in desalination, energy conversion, and biomedicine, thereby advancing the development of next-generation membrane technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信