一种基于有机-无机杂化超薄膜的多功能挥发性忆阻器,用于人工伤害感受器和边缘/库计算。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ying-Jie Ma, Song Sun, Lin Zhu, Chang Liu, Furui Teng, Liling Fu, Xinxin Wang, Jin-Yang Wei, Di Wu, Ai-Dong Li
{"title":"一种基于有机-无机杂化超薄膜的多功能挥发性忆阻器,用于人工伤害感受器和边缘/库计算。","authors":"Ying-Jie Ma, Song Sun, Lin Zhu, Chang Liu, Furui Teng, Liling Fu, Xinxin Wang, Jin-Yang Wei, Di Wu, Ai-Dong Li","doi":"10.1021/acsami.5c15142","DOIUrl":null,"url":null,"abstract":"<p><p>It is a challenge to endow intelligent robots with damage perception and forecast temporal data using nonvolatile memristor devices; however, volatile memristors can circumvent this issue owing to their unique ability of efficient encoding information and oblivion feature. At present, the emerging study mainly concentrates on inorganic volatile memristive materials. Herein, a multifunctional volatile memristor based on organic-inorganic hybrid ultrathin thin films has been developed for artificial nociceptor and edge/reservoir computing, which consists of a functional layer of 6 nm thick titanium-based maleic acid (Ti-MA) and 4 nm thick Al<sub>2</sub>O<sub>3</sub> prepared by molecular/atomic layer deposition (MLD/ALD). The ultrathin bilayer memristor of TiN/Ti-MA/Al<sub>2</sub>O<sub>3</sub>/Pt (TTAP) contributes to the precise tuning of the gradient distribution of oxygen vacancies, ensuring excellent reproducibility, endurance, and consistency of the memristor with a lower set/reset energy consumption. The volatility nature of the TTAP device originates from the natural diffusion of oxygen vacancies in the absence of external voltage. A series of important biosynaptic functions have been emulated in a single TTAP device. The multifunctional applications, including biological nociceptor, edge computing and reservoir computing, Pavlovian conditioning, and pattern recognition, are demonstrated in volatile organic-inorganic hybrid devices, showcasing exceptional capacity to process data. This work opens an avenue for MLD/ALD organic-inorganic hybrid volatile memristor applications in brain-inspired neuromorphic computing and artificial intelligence based on the versatility and multifunctionality of the TTAP memristor.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multifunctional Volatile Memristor Based on Organic-Inorganic Hybrid Ultrathin Films for Artificial Nociceptor and Edge/Reservoir Computing.\",\"authors\":\"Ying-Jie Ma, Song Sun, Lin Zhu, Chang Liu, Furui Teng, Liling Fu, Xinxin Wang, Jin-Yang Wei, Di Wu, Ai-Dong Li\",\"doi\":\"10.1021/acsami.5c15142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is a challenge to endow intelligent robots with damage perception and forecast temporal data using nonvolatile memristor devices; however, volatile memristors can circumvent this issue owing to their unique ability of efficient encoding information and oblivion feature. At present, the emerging study mainly concentrates on inorganic volatile memristive materials. Herein, a multifunctional volatile memristor based on organic-inorganic hybrid ultrathin thin films has been developed for artificial nociceptor and edge/reservoir computing, which consists of a functional layer of 6 nm thick titanium-based maleic acid (Ti-MA) and 4 nm thick Al<sub>2</sub>O<sub>3</sub> prepared by molecular/atomic layer deposition (MLD/ALD). The ultrathin bilayer memristor of TiN/Ti-MA/Al<sub>2</sub>O<sub>3</sub>/Pt (TTAP) contributes to the precise tuning of the gradient distribution of oxygen vacancies, ensuring excellent reproducibility, endurance, and consistency of the memristor with a lower set/reset energy consumption. The volatility nature of the TTAP device originates from the natural diffusion of oxygen vacancies in the absence of external voltage. A series of important biosynaptic functions have been emulated in a single TTAP device. The multifunctional applications, including biological nociceptor, edge computing and reservoir computing, Pavlovian conditioning, and pattern recognition, are demonstrated in volatile organic-inorganic hybrid devices, showcasing exceptional capacity to process data. This work opens an avenue for MLD/ALD organic-inorganic hybrid volatile memristor applications in brain-inspired neuromorphic computing and artificial intelligence based on the versatility and multifunctionality of the TTAP memristor.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c15142\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c15142","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用非易失性忆阻器器件赋予智能机器人损伤感知和预测时间数据是一个挑战;然而,易失性忆阻器由于其独特的高效信息编码能力和遗忘特性,可以避免这一问题。目前,新兴的研究主要集中在无机挥发性记忆材料上。本文研制了一种基于有机-无机杂化超薄薄膜的多功能挥发性忆阻器,用于人工伤害感受器和边缘/储层计算,该薄膜由6 nm厚的钛基马来酸(Ti-MA)和4 nm厚的分子/原子层沉积(MLD/ALD)制备的Al2O3组成。TiN/Ti-MA/Al2O3/Pt (TTAP)的超薄双层忆阻器有助于精确调整氧空缺的梯度分布,确保优异的再现性,耐用性和一致性,并具有较低的设置/复位能耗。TTAP器件的挥发性源于氧空位在没有外部电压的情况下的自然扩散。一系列重要的生物突触功能已被模拟在一个单一的TTAP装置。包括生物伤害感受器、边缘计算和存储库计算、巴甫洛夫条件反射和模式识别在内的多功能应用,在挥发性有机-无机混合设备中得到了演示,展示了卓越的数据处理能力。这项工作为MLD/ALD有机-无机混合挥发性忆阻器在基于TTAP忆阻器的多功能性和多功能性的脑启发神经形态计算和人工智能中的应用开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multifunctional Volatile Memristor Based on Organic-Inorganic Hybrid Ultrathin Films for Artificial Nociceptor and Edge/Reservoir Computing.

It is a challenge to endow intelligent robots with damage perception and forecast temporal data using nonvolatile memristor devices; however, volatile memristors can circumvent this issue owing to their unique ability of efficient encoding information and oblivion feature. At present, the emerging study mainly concentrates on inorganic volatile memristive materials. Herein, a multifunctional volatile memristor based on organic-inorganic hybrid ultrathin thin films has been developed for artificial nociceptor and edge/reservoir computing, which consists of a functional layer of 6 nm thick titanium-based maleic acid (Ti-MA) and 4 nm thick Al2O3 prepared by molecular/atomic layer deposition (MLD/ALD). The ultrathin bilayer memristor of TiN/Ti-MA/Al2O3/Pt (TTAP) contributes to the precise tuning of the gradient distribution of oxygen vacancies, ensuring excellent reproducibility, endurance, and consistency of the memristor with a lower set/reset energy consumption. The volatility nature of the TTAP device originates from the natural diffusion of oxygen vacancies in the absence of external voltage. A series of important biosynaptic functions have been emulated in a single TTAP device. The multifunctional applications, including biological nociceptor, edge computing and reservoir computing, Pavlovian conditioning, and pattern recognition, are demonstrated in volatile organic-inorganic hybrid devices, showcasing exceptional capacity to process data. This work opens an avenue for MLD/ALD organic-inorganic hybrid volatile memristor applications in brain-inspired neuromorphic computing and artificial intelligence based on the versatility and multifunctionality of the TTAP memristor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信