硝基自由基增强质子耦合电子转移选择性氧化生物质衍生的5-羟甲基糠醛。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-26 DOI:10.1002/cssc.202501492
Wenjing Wang, Ling Zhang, Taikang Jia, Bei Jiang, Mengya Xu, Ruofan Li, Chuanqi Zhang, Wenzhong Wang
{"title":"硝基自由基增强质子耦合电子转移选择性氧化生物质衍生的5-羟甲基糠醛。","authors":"Wenjing Wang, Ling Zhang, Taikang Jia, Bei Jiang, Mengya Xu, Ruofan Li, Chuanqi Zhang, Wenzhong Wang","doi":"10.1002/cssc.202501492","DOIUrl":null,"url":null,"abstract":"<p><p>The selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a key monomer for degradable plastics, is crucial for biomass valorization and addressing plastic pollution. However, its efficiency is limited by high energy barriers and slow kinetics due to the complex multi-electron and multi-proton transfer steps. Herein, a MIL-100(Fe)/TEMPO/nitric acid catalyst system is developed to facilitate electron transfer in HMF oxidation. The catalyst system achieves 100% conversion of 3 wt% HMF in 16 h at 353 K and atmospheric pressure, with a 94% yield of total acid product. The cyclic voltammetry and in situ electron paramagnetic resonance (EPR) reveal that nitric acid promotes TEMPO oxidation to TEMPO<sup>+</sup>, facilitating electron transfer and increasing the oxidation rate. The Griess method, ferrocene cation probe, and in situ EPR confirm nitric oxide (NO) formation, which acts as an electron shuttle between oxygen and MIL-100(Fe), accelerating the Fe(III)/Fe(II) redox cycle. Hydrogen/deuterium kinetic isotope effect analysis supports a proton-coupled electron transfer (PCET) mechanism. This study demonstrates that nitric acid significantly enhances PCET, enabling rapid oxidation of HMF to FDCA under mild conditions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501492"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitroxyl Radical-Enhanced Proton-Coupled Electron Transfer for the Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural.\",\"authors\":\"Wenjing Wang, Ling Zhang, Taikang Jia, Bei Jiang, Mengya Xu, Ruofan Li, Chuanqi Zhang, Wenzhong Wang\",\"doi\":\"10.1002/cssc.202501492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a key monomer for degradable plastics, is crucial for biomass valorization and addressing plastic pollution. However, its efficiency is limited by high energy barriers and slow kinetics due to the complex multi-electron and multi-proton transfer steps. Herein, a MIL-100(Fe)/TEMPO/nitric acid catalyst system is developed to facilitate electron transfer in HMF oxidation. The catalyst system achieves 100% conversion of 3 wt% HMF in 16 h at 353 K and atmospheric pressure, with a 94% yield of total acid product. The cyclic voltammetry and in situ electron paramagnetic resonance (EPR) reveal that nitric acid promotes TEMPO oxidation to TEMPO<sup>+</sup>, facilitating electron transfer and increasing the oxidation rate. The Griess method, ferrocene cation probe, and in situ EPR confirm nitric oxide (NO) formation, which acts as an electron shuttle between oxygen and MIL-100(Fe), accelerating the Fe(III)/Fe(II) redox cycle. Hydrogen/deuterium kinetic isotope effect analysis supports a proton-coupled electron transfer (PCET) mechanism. This study demonstrates that nitric acid significantly enhances PCET, enabling rapid oxidation of HMF to FDCA under mild conditions.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501492\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501492\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501492","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物质衍生的5-羟甲基糠醛(HMF)选择性氧化为2,5-呋喃二羧酸(FDCA)是降解塑料的关键单体,对生物质再生和解决塑料污染至关重要。然而,由于复杂的多电子和多质子转移步骤,其效率受到高能量势垒和慢动力学的限制。本文开发了MIL-100(Fe)/TEMPO/硝酸催化体系,以促进HMF氧化过程中的电子转移。该催化剂体系在353 K和常压下,在16小时内实现了3wt % HMF的100%转化率,总酸产率为94%。循环伏安法和原位电子顺磁共振(EPR)表明,硝酸促进TEMPO氧化为TEMPO+,促进电子转移,提高氧化速率。Griess法、二茂铁阳离子探针和原位EPR证实了一氧化氮(NO)的形成,一氧化氮作为氧和MIL-100(Fe)之间的电子穿梭体,加速了Fe(III)/Fe(II)的氧化还原循环。氢/氘动力学同位素效应分析支持质子耦合电子转移(PCET)机制。本研究表明,硝酸显著增强了PCET,使HMF在温和条件下快速氧化为FDCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitroxyl Radical-Enhanced Proton-Coupled Electron Transfer for the Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural.

The selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a key monomer for degradable plastics, is crucial for biomass valorization and addressing plastic pollution. However, its efficiency is limited by high energy barriers and slow kinetics due to the complex multi-electron and multi-proton transfer steps. Herein, a MIL-100(Fe)/TEMPO/nitric acid catalyst system is developed to facilitate electron transfer in HMF oxidation. The catalyst system achieves 100% conversion of 3 wt% HMF in 16 h at 353 K and atmospheric pressure, with a 94% yield of total acid product. The cyclic voltammetry and in situ electron paramagnetic resonance (EPR) reveal that nitric acid promotes TEMPO oxidation to TEMPO+, facilitating electron transfer and increasing the oxidation rate. The Griess method, ferrocene cation probe, and in situ EPR confirm nitric oxide (NO) formation, which acts as an electron shuttle between oxygen and MIL-100(Fe), accelerating the Fe(III)/Fe(II) redox cycle. Hydrogen/deuterium kinetic isotope effect analysis supports a proton-coupled electron transfer (PCET) mechanism. This study demonstrates that nitric acid significantly enhances PCET, enabling rapid oxidation of HMF to FDCA under mild conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信