Expedito Olimi, Regina Wuggenig, Carolina Lobato, Samuel Bickel, Peter Kusstatscher, Wisnu Adi Wicaksono, Angelika Battisti, Danny Coyne, John Adriko, Tomislav Cernava, Gabriele Berg
{"title":"东非不同地理区域的白月牙菌群研究","authors":"Expedito Olimi, Regina Wuggenig, Carolina Lobato, Samuel Bickel, Peter Kusstatscher, Wisnu Adi Wicaksono, Angelika Battisti, Danny Coyne, John Adriko, Tomislav Cernava, Gabriele Berg","doi":"10.1111/1758-2229.70200","DOIUrl":null,"url":null,"abstract":"<p><i>Mondia whitei</i> (Hook.f.) Skeels is an essential medicinal plant in African societies. However, little is known about the plant's metabolome and its microbiota. Here, we examine the root endosphere and rhizosphere from five locations in Uganda using high-throughput amplicon sequencing, qPCR and multifactorial modelling. Root metabolite profiles obtained with GC/LC–MS were comprehensively catalogued through a deep literature survey using 516 sources. Plant roots were inhabited by microbiota ranging between 50 and 500 ASVs, also with an average microbial abundance of 10<sup>11</sup> gene (16SrRNA or ITS) copies per gram. The microbiota was dominated by <i>Gammaproteobacteria</i>, <i>Alphaproteobacteria</i> and <i>Actinobacteria,</i> as well as <i>Sordariomycetes</i>, <i>Dothideomycota</i>, <i>Eurotiomycetes</i> and <i>Agaricomycetes</i>. We identified that a major portion of the microbiome (i.e., 45%–70%) was potentially transferred from the rhizosphere into the roots. Therefore, the root microbiota showed a strong location-specific microbial and metabolite fingerprint. Fraxin, 4-methoxy-benzaldehyde, monobutyl phthalate, 2-hydroxy-4-methoxybenzaldehyde, and scopoletin were among the 86 compounds found in plant roots that were strongly correlated with the root microbiota. Moreover, the identified plant compounds have been shown to mediate microbe, plant, and animal interactions. Our research advances the research frontiers of endangered African herbal plants, through providing insights into the microbiome and potential compounds of <i>M. whitei</i>, a medicinal plant used in sub-Saharan Africa.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70200","citationCount":"0","resultStr":"{\"title\":\"Insights Into the Mondia Whitei Microbiome Across Geographic Regions in Eastern Africa\",\"authors\":\"Expedito Olimi, Regina Wuggenig, Carolina Lobato, Samuel Bickel, Peter Kusstatscher, Wisnu Adi Wicaksono, Angelika Battisti, Danny Coyne, John Adriko, Tomislav Cernava, Gabriele Berg\",\"doi\":\"10.1111/1758-2229.70200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Mondia whitei</i> (Hook.f.) Skeels is an essential medicinal plant in African societies. However, little is known about the plant's metabolome and its microbiota. Here, we examine the root endosphere and rhizosphere from five locations in Uganda using high-throughput amplicon sequencing, qPCR and multifactorial modelling. Root metabolite profiles obtained with GC/LC–MS were comprehensively catalogued through a deep literature survey using 516 sources. Plant roots were inhabited by microbiota ranging between 50 and 500 ASVs, also with an average microbial abundance of 10<sup>11</sup> gene (16SrRNA or ITS) copies per gram. The microbiota was dominated by <i>Gammaproteobacteria</i>, <i>Alphaproteobacteria</i> and <i>Actinobacteria,</i> as well as <i>Sordariomycetes</i>, <i>Dothideomycota</i>, <i>Eurotiomycetes</i> and <i>Agaricomycetes</i>. We identified that a major portion of the microbiome (i.e., 45%–70%) was potentially transferred from the rhizosphere into the roots. Therefore, the root microbiota showed a strong location-specific microbial and metabolite fingerprint. Fraxin, 4-methoxy-benzaldehyde, monobutyl phthalate, 2-hydroxy-4-methoxybenzaldehyde, and scopoletin were among the 86 compounds found in plant roots that were strongly correlated with the root microbiota. Moreover, the identified plant compounds have been shown to mediate microbe, plant, and animal interactions. Our research advances the research frontiers of endangered African herbal plants, through providing insights into the microbiome and potential compounds of <i>M. whitei</i>, a medicinal plant used in sub-Saharan Africa.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70200\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70200\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70200","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Insights Into the Mondia Whitei Microbiome Across Geographic Regions in Eastern Africa
Mondia whitei (Hook.f.) Skeels is an essential medicinal plant in African societies. However, little is known about the plant's metabolome and its microbiota. Here, we examine the root endosphere and rhizosphere from five locations in Uganda using high-throughput amplicon sequencing, qPCR and multifactorial modelling. Root metabolite profiles obtained with GC/LC–MS were comprehensively catalogued through a deep literature survey using 516 sources. Plant roots were inhabited by microbiota ranging between 50 and 500 ASVs, also with an average microbial abundance of 1011 gene (16SrRNA or ITS) copies per gram. The microbiota was dominated by Gammaproteobacteria, Alphaproteobacteria and Actinobacteria, as well as Sordariomycetes, Dothideomycota, Eurotiomycetes and Agaricomycetes. We identified that a major portion of the microbiome (i.e., 45%–70%) was potentially transferred from the rhizosphere into the roots. Therefore, the root microbiota showed a strong location-specific microbial and metabolite fingerprint. Fraxin, 4-methoxy-benzaldehyde, monobutyl phthalate, 2-hydroxy-4-methoxybenzaldehyde, and scopoletin were among the 86 compounds found in plant roots that were strongly correlated with the root microbiota. Moreover, the identified plant compounds have been shown to mediate microbe, plant, and animal interactions. Our research advances the research frontiers of endangered African herbal plants, through providing insights into the microbiome and potential compounds of M. whitei, a medicinal plant used in sub-Saharan Africa.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.