通过丘脑-皮层睡眠纺锤波探索深部脑磁图

IF 3.3 2区 医学 Q1 NEUROIMAGING
Gregory F. Rattray, Hugo R. Jourde, Sylvain Baillet, Emily B. J. Coffey
{"title":"通过丘脑-皮层睡眠纺锤波探索深部脑磁图","authors":"Gregory F. Rattray,&nbsp;Hugo R. Jourde,&nbsp;Sylvain Baillet,&nbsp;Emily B. J. Coffey","doi":"10.1002/hbm.70354","DOIUrl":null,"url":null,"abstract":"<p>Subcortical brain regions like the thalamus are integral to numerous sensory and cognitive functions. Magnetoencephalography (MEG) enables the study of widespread brain networks with high temporal resolution, but the degree to which deep sources like the thalamus can be resolved remains unclear. Functional connectivity methods may enhance differentiation, yet few studies have extended them beyond the cortex. We investigated the possibility of resolving deep sources via connectivity patterns during thalamo-cortical sleep spindles to leverage their well-characterized circuitry, and during spindle-free periods of non-rapid eye movement sleep to explore neural recordings that lack such high-amplitude bursts of activity. MEG and electroencephalography (EEG) were recorded in 19 participants during a 2-h nap. Spindle and non-spindle periods were identified, and connectivity was assessed using coherence and imaginary coherence within a spindle-related network. Graph theory was also applied to identify network hubs. As expected, functional connectivity increased during spindles within a distributed thalamo-cortical-hippocampal network. Cortical connectivity patterns allowed differentiation among small thalamic nuclei, but metric choice and contrast use influenced topography and distance effects. Graph theory revealed distinct cortical, thalamic, and hippocampal contributions to fast (13–16 Hz) and slow (10–13 Hz) sigma-band connectivity. These findings demonstrate that MEG functional connectivity can resolve deep brain networks during NREM sleep and during spindles, and demonstrate how it can be used to study the functional roles of subcortical regions non-invasively in healthy humans. By clarifying methodological influences, we aim to guide future research design and interpretation.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70354","citationCount":"0","resultStr":"{\"title\":\"Exploring Deep Magnetoencephalography via Thalamo-Cortical Sleep Spindles\",\"authors\":\"Gregory F. Rattray,&nbsp;Hugo R. Jourde,&nbsp;Sylvain Baillet,&nbsp;Emily B. J. Coffey\",\"doi\":\"10.1002/hbm.70354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Subcortical brain regions like the thalamus are integral to numerous sensory and cognitive functions. Magnetoencephalography (MEG) enables the study of widespread brain networks with high temporal resolution, but the degree to which deep sources like the thalamus can be resolved remains unclear. Functional connectivity methods may enhance differentiation, yet few studies have extended them beyond the cortex. We investigated the possibility of resolving deep sources via connectivity patterns during thalamo-cortical sleep spindles to leverage their well-characterized circuitry, and during spindle-free periods of non-rapid eye movement sleep to explore neural recordings that lack such high-amplitude bursts of activity. MEG and electroencephalography (EEG) were recorded in 19 participants during a 2-h nap. Spindle and non-spindle periods were identified, and connectivity was assessed using coherence and imaginary coherence within a spindle-related network. Graph theory was also applied to identify network hubs. As expected, functional connectivity increased during spindles within a distributed thalamo-cortical-hippocampal network. Cortical connectivity patterns allowed differentiation among small thalamic nuclei, but metric choice and contrast use influenced topography and distance effects. Graph theory revealed distinct cortical, thalamic, and hippocampal contributions to fast (13–16 Hz) and slow (10–13 Hz) sigma-band connectivity. These findings demonstrate that MEG functional connectivity can resolve deep brain networks during NREM sleep and during spindles, and demonstrate how it can be used to study the functional roles of subcortical regions non-invasively in healthy humans. By clarifying methodological influences, we aim to guide future research design and interpretation.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 14\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70354\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70354\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70354","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

像丘脑这样的大脑皮层下区域是许多感觉和认知功能的组成部分。脑磁图(MEG)能够以高时间分辨率研究广泛的大脑网络,但是像丘脑这样的深层来源可以被解决的程度仍然不清楚。功能连接方法可能会增强分化,但很少有研究将其扩展到皮层之外。我们研究了通过丘脑-皮质睡眠纺锤波期间的连接模式来解决深层源的可能性,以利用其良好的特征电路,并在非快速眼动睡眠的无纺锤波期间探索缺乏这种高振幅活动爆发的神经记录。19名参与者在2小时的小睡期间进行了MEG和脑电图(EEG)记录。纺锤体和非纺锤体周期被确定,并使用纺锤体相关网络内的相干性和虚相干性评估连通性。图论也被用于识别网络枢纽。正如预期的那样,在分布的丘脑-皮质-海马网络中,纺锤波的功能连通性增加了。皮质连接模式允许小丘脑核之间的分化,但度量选择和对比使用影响地形和距离效应。图论揭示了皮层、丘脑和海马对快速(13-16 Hz)和慢速(10-13 Hz)西格玛频带连接的不同贡献。这些发现表明,脑磁图的功能连接可以在非快速眼动睡眠和纺锤波期间解析大脑深部网络,并证明了它如何可以用于研究健康人皮质下区域的非侵入性功能作用。通过澄清方法论的影响,我们旨在指导未来的研究设计和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Deep Magnetoencephalography via Thalamo-Cortical Sleep Spindles

Exploring Deep Magnetoencephalography via Thalamo-Cortical Sleep Spindles

Subcortical brain regions like the thalamus are integral to numerous sensory and cognitive functions. Magnetoencephalography (MEG) enables the study of widespread brain networks with high temporal resolution, but the degree to which deep sources like the thalamus can be resolved remains unclear. Functional connectivity methods may enhance differentiation, yet few studies have extended them beyond the cortex. We investigated the possibility of resolving deep sources via connectivity patterns during thalamo-cortical sleep spindles to leverage their well-characterized circuitry, and during spindle-free periods of non-rapid eye movement sleep to explore neural recordings that lack such high-amplitude bursts of activity. MEG and electroencephalography (EEG) were recorded in 19 participants during a 2-h nap. Spindle and non-spindle periods were identified, and connectivity was assessed using coherence and imaginary coherence within a spindle-related network. Graph theory was also applied to identify network hubs. As expected, functional connectivity increased during spindles within a distributed thalamo-cortical-hippocampal network. Cortical connectivity patterns allowed differentiation among small thalamic nuclei, but metric choice and contrast use influenced topography and distance effects. Graph theory revealed distinct cortical, thalamic, and hippocampal contributions to fast (13–16 Hz) and slow (10–13 Hz) sigma-band connectivity. These findings demonstrate that MEG functional connectivity can resolve deep brain networks during NREM sleep and during spindles, and demonstrate how it can be used to study the functional roles of subcortical regions non-invasively in healthy humans. By clarifying methodological influences, we aim to guide future research design and interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信