恶劣天气产生的声波和重力波对电离层的影响:一个模式引导的案例研究

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
P. A. Inchin, C. Heale, M. D. Zettergren, B. Bergsson, S. Debchoudhury, S. Chakraborty
{"title":"恶劣天气产生的声波和重力波对电离层的影响:一个模式引导的案例研究","authors":"P. A. Inchin,&nbsp;C. Heale,&nbsp;M. D. Zettergren,&nbsp;B. Bergsson,&nbsp;S. Debchoudhury,&nbsp;S. Chakraborty","doi":"10.1029/2025JA034012","DOIUrl":null,"url":null,"abstract":"<p>Acoustic and gravity waves (AGWs) generated by tropospheric weather are known sources of fluctuations in the ionosphere—traveling ionospheric disturbances (TIDs). Despite their importance, the effects of AGWs on the ionosphere, including associated energy and momentum deposition, remain poorly quantified. To address this gap, we present our first three-dimensional numerical simulations of coupled atmosphere-ionosphere dynamics during a typical severe terrestrial weather episode over the continental United States in May 2017. Using the nonlinear compressible models MAGIC and GEMINI, we reproduced many of the salient features of AGW-driven TIDs in slant total electron content. Simulation results reveal that although AGW-TID amplitudes reach only <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>0.35 TECu (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>2–3<span></span><math>\n <semantics>\n <mrow>\n <mi>%</mi>\n </mrow>\n <annotation> $\\%$</annotation>\n </semantics></math> of absolute vTEC), AGWs induce substantial ionospheric fluctuations, up to 70 K in ion and 120 K in electron temperatures (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>10–16<span></span><math>\n <semantics>\n <mrow>\n <mi>%</mi>\n </mrow>\n <annotation> $\\%$</annotation>\n </semantics></math> of ambient state), as well as <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>10</mn>\n <mi>%</mi>\n </mrow>\n <annotation> ${\\sim} 10\\%$</annotation>\n </semantics></math> in electron density at 100–300 km altitudes. Furthermore, long-period AGW impacts (lasting several hours), continuously generated by the evolving weather system, result in significant redistribution of plasma and modification of electron density ambient state by more than <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>20</mn>\n <mi>%</mi>\n </mrow>\n <annotation> ${\\sim} 20\\%$</annotation>\n </semantics></math> in the E and bottom F regions of the ionosphere. These modifications can plausibly affect various communication and navigation system applications, highlighting the need to incorporate AGW effects into space weather forecasts.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Severe Weather-Generated Acoustic and Gravity Wave Impacts on the Ionosphere: A Model-Guided Case Study\",\"authors\":\"P. A. Inchin,&nbsp;C. Heale,&nbsp;M. D. Zettergren,&nbsp;B. Bergsson,&nbsp;S. Debchoudhury,&nbsp;S. Chakraborty\",\"doi\":\"10.1029/2025JA034012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acoustic and gravity waves (AGWs) generated by tropospheric weather are known sources of fluctuations in the ionosphere—traveling ionospheric disturbances (TIDs). Despite their importance, the effects of AGWs on the ionosphere, including associated energy and momentum deposition, remain poorly quantified. To address this gap, we present our first three-dimensional numerical simulations of coupled atmosphere-ionosphere dynamics during a typical severe terrestrial weather episode over the continental United States in May 2017. Using the nonlinear compressible models MAGIC and GEMINI, we reproduced many of the salient features of AGW-driven TIDs in slant total electron content. Simulation results reveal that although AGW-TID amplitudes reach only <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>0.35 TECu (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>2–3<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>%</mi>\\n </mrow>\\n <annotation> $\\\\%$</annotation>\\n </semantics></math> of absolute vTEC), AGWs induce substantial ionospheric fluctuations, up to 70 K in ion and 120 K in electron temperatures (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>10–16<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>%</mi>\\n </mrow>\\n <annotation> $\\\\%$</annotation>\\n </semantics></math> of ambient state), as well as <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n <mn>10</mn>\\n <mi>%</mi>\\n </mrow>\\n <annotation> ${\\\\sim} 10\\\\%$</annotation>\\n </semantics></math> in electron density at 100–300 km altitudes. Furthermore, long-period AGW impacts (lasting several hours), continuously generated by the evolving weather system, result in significant redistribution of plasma and modification of electron density ambient state by more than <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n <mn>20</mn>\\n <mi>%</mi>\\n </mrow>\\n <annotation> ${\\\\sim} 20\\\\%$</annotation>\\n </semantics></math> in the E and bottom F regions of the ionosphere. These modifications can plausibly affect various communication and navigation system applications, highlighting the need to incorporate AGW effects into space weather forecasts.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034012\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034012","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对流层天气产生的声波和重力波(agw)是电离层传播电离层扰动(TIDs)波动的已知来源。尽管它们很重要,但agw对电离层的影响,包括相关的能量和动量沉积,仍然很难量化。为了解决这一差距,我们首次提出了2017年5月美国大陆典型恶劣天气期间大气-电离层耦合动力学的三维数值模拟。利用非线性可压缩模型MAGIC和GEMINI,我们再现了agw驱动TIDs在倾斜总电子含量方面的许多显著特征。模拟结果表明,虽然AGW-TID振幅仅达到~ ${\sim} $ 0.35 TECu (~ ${\sim} $ 2 - 3% $\%$绝对vTEC),但agw引起了大量的电离层波动。高达70 K的离子和120 K的电子温度(环境状态的10 - 16%),以及100-300公里高度的电子密度的10 - 10%。此外,不断演变的天气系统持续产生的长周期AGW影响(持续数小时)导致电离层E和F底区域的等离子体重分布和电子密度环境状态的改变超过20%。这些修改可能会影响各种通信和导航系统的应用,突出了将AGW效应纳入空间天气预报的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Severe Weather-Generated Acoustic and Gravity Wave Impacts on the Ionosphere: A Model-Guided Case Study

Severe Weather-Generated Acoustic and Gravity Wave Impacts on the Ionosphere: A Model-Guided Case Study

Acoustic and gravity waves (AGWs) generated by tropospheric weather are known sources of fluctuations in the ionosphere—traveling ionospheric disturbances (TIDs). Despite their importance, the effects of AGWs on the ionosphere, including associated energy and momentum deposition, remain poorly quantified. To address this gap, we present our first three-dimensional numerical simulations of coupled atmosphere-ionosphere dynamics during a typical severe terrestrial weather episode over the continental United States in May 2017. Using the nonlinear compressible models MAGIC and GEMINI, we reproduced many of the salient features of AGW-driven TIDs in slant total electron content. Simulation results reveal that although AGW-TID amplitudes reach only ${\sim} $ 0.35 TECu ( ${\sim} $ 2–3 % $\%$ of absolute vTEC), AGWs induce substantial ionospheric fluctuations, up to 70 K in ion and 120 K in electron temperatures ( ${\sim} $ 10–16 % $\%$ of ambient state), as well as 10 % ${\sim} 10\%$ in electron density at 100–300 km altitudes. Furthermore, long-period AGW impacts (lasting several hours), continuously generated by the evolving weather system, result in significant redistribution of plasma and modification of electron density ambient state by more than 20 % ${\sim} 20\%$ in the E and bottom F regions of the ionosphere. These modifications can plausibly affect various communication and navigation system applications, highlighting the need to incorporate AGW effects into space weather forecasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信