S. Karl, E. B. Skinner, S. McEwen, J. Keven, J. Kisomb, L. J. Robinson, M. Laman
{"title":"气候变化预计将扩大巴布亚新几内亚疟疾传播范围和面临风险的人口","authors":"S. Karl, E. B. Skinner, S. McEwen, J. Keven, J. Kisomb, L. J. Robinson, M. Laman","doi":"10.1029/2025GH001541","DOIUrl":null,"url":null,"abstract":"<p>Warming temperatures are expanding the potential for malaria transmission into higher altitudes, with important implications for malaria control planning. In Papua New Guinea (PNG), malaria is widespread in lowland areas but rarely transmitted above 1,600 m. This study assessed changes in malaria transmission suitability across PNG from 1960 to 2019 and projected shifts through 2040, using satellite-derived temperature data and climate models. We applied a temperature-dependent basic reproduction number (<i>R</i><sub>0</sub>) to identify shifts in geographic suitability, estimate the population at risk, and evaluate the effectiveness of interventions. Malaria temperature suitability ranges have subtly changed between 1960 and 2019, with the proportion of people living in suitable areas increasing from 58% to 61% (equivalent to an additional 249,125 people). Under a conservative climate change model, this proportion is expected increase to 74% by 2040 (equivalent to an additional 2,802,709 people). Interventions had a larger impact on malaria incidence in areas with <i>R</i><sub>0</sub> < 0.3, mitigating the current and future impact of climate change. Nevertheless, the number of people requiring access to malaria control is expected to double by 2040, to 13.4 million with 2.8 million attributed to climate change alone. The impacted areas are densely populated highlands regions with a more susceptible population and an increased potential for epidemics and clinical disease. These findings underscore the challenges of climate change for malaria elimination in PNG and highlight the need to accurately guide preparedness and forecast the additional resource requirements.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"9 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GH001541","citationCount":"0","resultStr":"{\"title\":\"Climate Change Is Expected to Expand Malaria Transmission Range and Population at Risk in Papua New Guinea\",\"authors\":\"S. Karl, E. B. Skinner, S. McEwen, J. Keven, J. Kisomb, L. J. Robinson, M. Laman\",\"doi\":\"10.1029/2025GH001541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Warming temperatures are expanding the potential for malaria transmission into higher altitudes, with important implications for malaria control planning. In Papua New Guinea (PNG), malaria is widespread in lowland areas but rarely transmitted above 1,600 m. This study assessed changes in malaria transmission suitability across PNG from 1960 to 2019 and projected shifts through 2040, using satellite-derived temperature data and climate models. We applied a temperature-dependent basic reproduction number (<i>R</i><sub>0</sub>) to identify shifts in geographic suitability, estimate the population at risk, and evaluate the effectiveness of interventions. Malaria temperature suitability ranges have subtly changed between 1960 and 2019, with the proportion of people living in suitable areas increasing from 58% to 61% (equivalent to an additional 249,125 people). Under a conservative climate change model, this proportion is expected increase to 74% by 2040 (equivalent to an additional 2,802,709 people). Interventions had a larger impact on malaria incidence in areas with <i>R</i><sub>0</sub> < 0.3, mitigating the current and future impact of climate change. Nevertheless, the number of people requiring access to malaria control is expected to double by 2040, to 13.4 million with 2.8 million attributed to climate change alone. The impacted areas are densely populated highlands regions with a more susceptible population and an increased potential for epidemics and clinical disease. These findings underscore the challenges of climate change for malaria elimination in PNG and highlight the need to accurately guide preparedness and forecast the additional resource requirements.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GH001541\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GH001541\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GH001541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Climate Change Is Expected to Expand Malaria Transmission Range and Population at Risk in Papua New Guinea
Warming temperatures are expanding the potential for malaria transmission into higher altitudes, with important implications for malaria control planning. In Papua New Guinea (PNG), malaria is widespread in lowland areas but rarely transmitted above 1,600 m. This study assessed changes in malaria transmission suitability across PNG from 1960 to 2019 and projected shifts through 2040, using satellite-derived temperature data and climate models. We applied a temperature-dependent basic reproduction number (R0) to identify shifts in geographic suitability, estimate the population at risk, and evaluate the effectiveness of interventions. Malaria temperature suitability ranges have subtly changed between 1960 and 2019, with the proportion of people living in suitable areas increasing from 58% to 61% (equivalent to an additional 249,125 people). Under a conservative climate change model, this proportion is expected increase to 74% by 2040 (equivalent to an additional 2,802,709 people). Interventions had a larger impact on malaria incidence in areas with R0 < 0.3, mitigating the current and future impact of climate change. Nevertheless, the number of people requiring access to malaria control is expected to double by 2040, to 13.4 million with 2.8 million attributed to climate change alone. The impacted areas are densely populated highlands regions with a more susceptible population and an increased potential for epidemics and clinical disease. These findings underscore the challenges of climate change for malaria elimination in PNG and highlight the need to accurately guide preparedness and forecast the additional resource requirements.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.