基于隐写信息分布仿真的隐写防御网络

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinjin Liu, Sa Xue, Xinyu Zhang, Fengyuan Xiang, Yuanyuan Ma
{"title":"基于隐写信息分布仿真的隐写防御网络","authors":"Jinjin Liu,&nbsp;Sa Xue,&nbsp;Xinyu Zhang,&nbsp;Fengyuan Xiang,&nbsp;Yuanyuan Ma","doi":"10.1155/int/9958912","DOIUrl":null,"url":null,"abstract":"<p>In order to block the spread of illegal stego-image and reduce the erasing traces of steganography attacks on images, this paper proposes a steganography attack network based on simulation of steganography information distribution. First, a strategy of simulating steganography noise was adopted, and the distribution of steganography noise was learned by convolutional neural network, and a small amount of noise was added to the position of the secret message accurately to complete the attack on the steganography information, while protecting the image content to the maximum extent. In addition, different image recovery modules are designed in the deep network, such as the shallow feature extraction module, progressive attention recovery module, and detail feature reconstruction module, which collectively leverage hierarchical pixel features to mitigate discrepancies between reconstructed and original images while preserving visual fidelity before and after image attacks. Through two kinds of loss functions, the deep network model continuously optimizes the network performance to achieve the minimum degree of damage to the image content and the maximum degree of recovery of the reconstructed image. Experimental results show that the proposed method is superior to other methods in erasing secret message and restoring image quality.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9958912","citationCount":"0","resultStr":"{\"title\":\"Steganography Defense Network Based on Simulation of Steganography Information Distribution\",\"authors\":\"Jinjin Liu,&nbsp;Sa Xue,&nbsp;Xinyu Zhang,&nbsp;Fengyuan Xiang,&nbsp;Yuanyuan Ma\",\"doi\":\"10.1155/int/9958912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to block the spread of illegal stego-image and reduce the erasing traces of steganography attacks on images, this paper proposes a steganography attack network based on simulation of steganography information distribution. First, a strategy of simulating steganography noise was adopted, and the distribution of steganography noise was learned by convolutional neural network, and a small amount of noise was added to the position of the secret message accurately to complete the attack on the steganography information, while protecting the image content to the maximum extent. In addition, different image recovery modules are designed in the deep network, such as the shallow feature extraction module, progressive attention recovery module, and detail feature reconstruction module, which collectively leverage hierarchical pixel features to mitigate discrepancies between reconstructed and original images while preserving visual fidelity before and after image attacks. Through two kinds of loss functions, the deep network model continuously optimizes the network performance to achieve the minimum degree of damage to the image content and the maximum degree of recovery of the reconstructed image. Experimental results show that the proposed method is superior to other methods in erasing secret message and restoring image quality.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9958912\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/9958912\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/9958912","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了阻止非法隐写图像的传播,减少隐写攻击对图像的擦除痕迹,本文提出了一种基于隐写信息分布仿真的隐写攻击网络。首先,采用模拟隐写噪声的策略,通过卷积神经网络学习隐写噪声的分布,并在密文的位置精确地加入少量噪声,完成对隐写信息的攻击,同时最大程度地保护图像内容。此外,在深度网络中设计了不同的图像恢复模块,如浅层特征提取模块、渐进注意力恢复模块和细节特征重建模块,这些模块共同利用分层像素特征来减轻重建图像与原始图像之间的差异,同时保持图像攻击前后的视觉保真度。通过两种损失函数,深度网络模型不断优化网络性能,以实现对图像内容的最小破坏程度和重构图像的最大恢复程度。实验结果表明,该方法在消除秘密信息和恢复图像质量方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Steganography Defense Network Based on Simulation of Steganography Information Distribution

Steganography Defense Network Based on Simulation of Steganography Information Distribution

In order to block the spread of illegal stego-image and reduce the erasing traces of steganography attacks on images, this paper proposes a steganography attack network based on simulation of steganography information distribution. First, a strategy of simulating steganography noise was adopted, and the distribution of steganography noise was learned by convolutional neural network, and a small amount of noise was added to the position of the secret message accurately to complete the attack on the steganography information, while protecting the image content to the maximum extent. In addition, different image recovery modules are designed in the deep network, such as the shallow feature extraction module, progressive attention recovery module, and detail feature reconstruction module, which collectively leverage hierarchical pixel features to mitigate discrepancies between reconstructed and original images while preserving visual fidelity before and after image attacks. Through two kinds of loss functions, the deep network model continuously optimizes the network performance to achieve the minimum degree of damage to the image content and the maximum degree of recovery of the reconstructed image. Experimental results show that the proposed method is superior to other methods in erasing secret message and restoring image quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信