Yuchun Kuang, Tao Zhang, Peng Fan, Yizheng Jia, Shuang Wang, Daxi Sun
{"title":"考虑橡胶材料体积模量的几种经典现象学超弹性本构模型拟合效果研究","authors":"Yuchun Kuang, Tao Zhang, Peng Fan, Yizheng Jia, Shuang Wang, Daxi Sun","doi":"10.1007/s00419-025-02944-y","DOIUrl":null,"url":null,"abstract":"<div><p>To improve stress–strain prediction accuracy for dense vulcanized rubber, this study develops a constitutive modeling fitting framework incorporating bulk modulus (<i>K</i>) effects (i.e., a nearly incompressible formulation). Six classical phenomenological hyperelastic models—Three-Term Mooney-Rivlin (MR_T), Yeoh, Yeoh_Revised (Yeoh_R), Gent-Gent (GGent), Ogden, and Lopez-Pamies—are comparatively evaluated within this framework. Systematic assessment via the goodness-of-fit (<i>R</i><sup>2</sup>) metric quantifies model performance across three deformation modes (simple tension, planar tension, and equibiaxial tension) for multiple rubber materials, including HNBR, FPM, silicone rubber, and the Treloar dataset. The framework is further extended to highly compressible rubber-like materials (e.g., foams/hydrogels). Key results demonstrate: (i) Significant <i>R</i><sup>2</sup> improvement for comprehensive tensile stress predictions in dense vulcanized rubber; (ii) Pronounced enhancement of equibiaxial tensile stress accuracy for generalized Mooney-Rivlin models (e.g., MR_T, Yeoh_R); (iii) Critical dependence of the Ogden model on parameter initialization to ensure physical relevance and mitigate sensitivity; (iv) Limited applicability to highly compressible materials with strong model-specific performance variation; (v) Essential requirement for comprehensive experimental validation, particularly high-precision bulk modulus (K) characterization. This work provides quantitative selection criteria for phenomenological constitutive models in FEA, incorporating the calculation of shear modulus (<i>G</i>) to enable more reliable assessment of rubber material behavior in engineering applications.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the fitting effects of several classical phenomenological hyperelastic constitutive models: considering the bulk modulus of rubber materials\",\"authors\":\"Yuchun Kuang, Tao Zhang, Peng Fan, Yizheng Jia, Shuang Wang, Daxi Sun\",\"doi\":\"10.1007/s00419-025-02944-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve stress–strain prediction accuracy for dense vulcanized rubber, this study develops a constitutive modeling fitting framework incorporating bulk modulus (<i>K</i>) effects (i.e., a nearly incompressible formulation). Six classical phenomenological hyperelastic models—Three-Term Mooney-Rivlin (MR_T), Yeoh, Yeoh_Revised (Yeoh_R), Gent-Gent (GGent), Ogden, and Lopez-Pamies—are comparatively evaluated within this framework. Systematic assessment via the goodness-of-fit (<i>R</i><sup>2</sup>) metric quantifies model performance across three deformation modes (simple tension, planar tension, and equibiaxial tension) for multiple rubber materials, including HNBR, FPM, silicone rubber, and the Treloar dataset. The framework is further extended to highly compressible rubber-like materials (e.g., foams/hydrogels). Key results demonstrate: (i) Significant <i>R</i><sup>2</sup> improvement for comprehensive tensile stress predictions in dense vulcanized rubber; (ii) Pronounced enhancement of equibiaxial tensile stress accuracy for generalized Mooney-Rivlin models (e.g., MR_T, Yeoh_R); (iii) Critical dependence of the Ogden model on parameter initialization to ensure physical relevance and mitigate sensitivity; (iv) Limited applicability to highly compressible materials with strong model-specific performance variation; (v) Essential requirement for comprehensive experimental validation, particularly high-precision bulk modulus (K) characterization. This work provides quantitative selection criteria for phenomenological constitutive models in FEA, incorporating the calculation of shear modulus (<i>G</i>) to enable more reliable assessment of rubber material behavior in engineering applications.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"95 10\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-025-02944-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-025-02944-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Research on the fitting effects of several classical phenomenological hyperelastic constitutive models: considering the bulk modulus of rubber materials
To improve stress–strain prediction accuracy for dense vulcanized rubber, this study develops a constitutive modeling fitting framework incorporating bulk modulus (K) effects (i.e., a nearly incompressible formulation). Six classical phenomenological hyperelastic models—Three-Term Mooney-Rivlin (MR_T), Yeoh, Yeoh_Revised (Yeoh_R), Gent-Gent (GGent), Ogden, and Lopez-Pamies—are comparatively evaluated within this framework. Systematic assessment via the goodness-of-fit (R2) metric quantifies model performance across three deformation modes (simple tension, planar tension, and equibiaxial tension) for multiple rubber materials, including HNBR, FPM, silicone rubber, and the Treloar dataset. The framework is further extended to highly compressible rubber-like materials (e.g., foams/hydrogels). Key results demonstrate: (i) Significant R2 improvement for comprehensive tensile stress predictions in dense vulcanized rubber; (ii) Pronounced enhancement of equibiaxial tensile stress accuracy for generalized Mooney-Rivlin models (e.g., MR_T, Yeoh_R); (iii) Critical dependence of the Ogden model on parameter initialization to ensure physical relevance and mitigate sensitivity; (iv) Limited applicability to highly compressible materials with strong model-specific performance variation; (v) Essential requirement for comprehensive experimental validation, particularly high-precision bulk modulus (K) characterization. This work provides quantitative selection criteria for phenomenological constitutive models in FEA, incorporating the calculation of shear modulus (G) to enable more reliable assessment of rubber material behavior in engineering applications.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.