M. Sarker, M. M. Hasan, M. G. Shah, M. R. Hossen, A. A. Mamun
{"title":"具有tsallis分布电子和正电子的多种磁等离子体中的动力学alfv<s:1>孤波","authors":"M. Sarker, M. M. Hasan, M. G. Shah, M. R. Hossen, A. A. Mamun","doi":"10.1140/epjd/s10053-025-01063-1","DOIUrl":null,"url":null,"abstract":"<p>The nonlinear dynamics of plasma waves in multi-species magnetized systems is of great importance for understanding energy transport and particle interactions in both astrophysical and laboratory environments. This study investigates heavy ion-acoustic kinetic Alfvén solitary waves (HIAKASWs) in a magnetized plasma composed of inertial thermal heavy ions and non-extensive electron–positron pairs. Using the reductive perturbation method, we derive both the Korteweg–de Vries (K-DV) and modified Korteweg–de Vries (MK-DV) equations, which capture the balance between dispersion and nonlinearity, and analyze their soliton solutions under different plasma conditions. The electron and positron populations are described by Tsallis non-extensive statistics, allowing exploration of deviations from Maxwellian behavior. The analysis reveals that the K-DV equation admits both compressive and rarefactive solitary structures, while the higher-order MK-DV formulation supports only compressive modes. Parametric investigations demonstrate that heavy ion thermal pressure and inertia play a dominant role in shaping wave amplitude and width compared to electron and positron effects. The results highlight the influence of non-extensivity, magnetic field strength, and propagation angle on solitary wave characteristics, with implications for plasma dynamics in astrophysical and laboratory environments.</p><p>The plots highlight the effects of <span>\\(\\beta \\)</span>, <span>\\(\\gamma \\)</span>, and heavy ion density on dispersion, nonlinearity, and electrostatic potential of K-DV and MK-DV solitons, relevant to astrophysical and laboratory plasmas.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"79 9","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic Alfvén solitary waves in multi-species magnetoplasma with Tsallis-distributed electrons and positrons\",\"authors\":\"M. Sarker, M. M. Hasan, M. G. Shah, M. R. Hossen, A. A. Mamun\",\"doi\":\"10.1140/epjd/s10053-025-01063-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nonlinear dynamics of plasma waves in multi-species magnetized systems is of great importance for understanding energy transport and particle interactions in both astrophysical and laboratory environments. This study investigates heavy ion-acoustic kinetic Alfvén solitary waves (HIAKASWs) in a magnetized plasma composed of inertial thermal heavy ions and non-extensive electron–positron pairs. Using the reductive perturbation method, we derive both the Korteweg–de Vries (K-DV) and modified Korteweg–de Vries (MK-DV) equations, which capture the balance between dispersion and nonlinearity, and analyze their soliton solutions under different plasma conditions. The electron and positron populations are described by Tsallis non-extensive statistics, allowing exploration of deviations from Maxwellian behavior. The analysis reveals that the K-DV equation admits both compressive and rarefactive solitary structures, while the higher-order MK-DV formulation supports only compressive modes. Parametric investigations demonstrate that heavy ion thermal pressure and inertia play a dominant role in shaping wave amplitude and width compared to electron and positron effects. The results highlight the influence of non-extensivity, magnetic field strength, and propagation angle on solitary wave characteristics, with implications for plasma dynamics in astrophysical and laboratory environments.</p><p>The plots highlight the effects of <span>\\\\(\\\\beta \\\\)</span>, <span>\\\\(\\\\gamma \\\\)</span>, and heavy ion density on dispersion, nonlinearity, and electrostatic potential of K-DV and MK-DV solitons, relevant to astrophysical and laboratory plasmas.</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"79 9\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-025-01063-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-025-01063-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Kinetic Alfvén solitary waves in multi-species magnetoplasma with Tsallis-distributed electrons and positrons
The nonlinear dynamics of plasma waves in multi-species magnetized systems is of great importance for understanding energy transport and particle interactions in both astrophysical and laboratory environments. This study investigates heavy ion-acoustic kinetic Alfvén solitary waves (HIAKASWs) in a magnetized plasma composed of inertial thermal heavy ions and non-extensive electron–positron pairs. Using the reductive perturbation method, we derive both the Korteweg–de Vries (K-DV) and modified Korteweg–de Vries (MK-DV) equations, which capture the balance between dispersion and nonlinearity, and analyze their soliton solutions under different plasma conditions. The electron and positron populations are described by Tsallis non-extensive statistics, allowing exploration of deviations from Maxwellian behavior. The analysis reveals that the K-DV equation admits both compressive and rarefactive solitary structures, while the higher-order MK-DV formulation supports only compressive modes. Parametric investigations demonstrate that heavy ion thermal pressure and inertia play a dominant role in shaping wave amplitude and width compared to electron and positron effects. The results highlight the influence of non-extensivity, magnetic field strength, and propagation angle on solitary wave characteristics, with implications for plasma dynamics in astrophysical and laboratory environments.
The plots highlight the effects of \(\beta \), \(\gamma \), and heavy ion density on dispersion, nonlinearity, and electrostatic potential of K-DV and MK-DV solitons, relevant to astrophysical and laboratory plasmas.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.