{"title":"聚对苯二甲酸乙二醇酯(PET)微塑料对萝卜和胡萝卜生长、营养吸收和生理应激反应的影响","authors":"Fauzia Mahanaz Shorobi, Jin Hee Park","doi":"10.1186/s13765-025-01039-0","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread use and improper disposal of plastics in the environment lead to microplastic (MP) pollution. Polyethylene terephthalate (PET) plastics are widely used as single-use plastics, and the mass use of these plastics is contaminating aquatic and terrestrial environments. The transportation of those plastic fragments on agricultural land increases the risk to crop production and food safety. Therefore, the study aimed to evaluate the effect of polyethylene terephthalate microplastics (PET-MPs) on plant growth, nutrient uptake, and physiological stress responses. A short-term effect of PET-MPs (0.1 g/L) on plant growth was assessed using radish (<i>Raphanus sativus</i>) and carrot (<i>Daucus carota</i> var. <i>sativa</i>) grown in half-strength Hoagland solution for one week. PET-MPs did not significantly affect plant biomass and nutrient uptake by plants. Micronutrients such as Cu, Fe, Mn, and Zn were mostly increased in roots and decreased in shoot samples of both plants with PET-MP treatment compared to the control. Although short-term exposure of plants to PET-MPs did not significantly affect plant biomass and nutrient uptake, a significant difference was observed in the physiological stress responses. Chlorophyll a and <i>b</i> contents were significantly (<i>p</i> < 0.05) decreased in radish leaves after PET-MP treatment. Malondialdehyde (MDA) content in the leaves of radish plants significantly increased, indicating that the plant was facing abiotic stress in PET-MP treatment. This study advances understanding of MP-induced phytotoxicity and highlights its potential implications for food safety in agroecosystems.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-01039-0","citationCount":"0","resultStr":"{\"title\":\"Effect of polyethylene terephthalate (PET) microplastics on radish and carrot growth, nutrient uptake, and physiological stress responses\",\"authors\":\"Fauzia Mahanaz Shorobi, Jin Hee Park\",\"doi\":\"10.1186/s13765-025-01039-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The widespread use and improper disposal of plastics in the environment lead to microplastic (MP) pollution. Polyethylene terephthalate (PET) plastics are widely used as single-use plastics, and the mass use of these plastics is contaminating aquatic and terrestrial environments. The transportation of those plastic fragments on agricultural land increases the risk to crop production and food safety. Therefore, the study aimed to evaluate the effect of polyethylene terephthalate microplastics (PET-MPs) on plant growth, nutrient uptake, and physiological stress responses. A short-term effect of PET-MPs (0.1 g/L) on plant growth was assessed using radish (<i>Raphanus sativus</i>) and carrot (<i>Daucus carota</i> var. <i>sativa</i>) grown in half-strength Hoagland solution for one week. PET-MPs did not significantly affect plant biomass and nutrient uptake by plants. Micronutrients such as Cu, Fe, Mn, and Zn were mostly increased in roots and decreased in shoot samples of both plants with PET-MP treatment compared to the control. Although short-term exposure of plants to PET-MPs did not significantly affect plant biomass and nutrient uptake, a significant difference was observed in the physiological stress responses. Chlorophyll a and <i>b</i> contents were significantly (<i>p</i> < 0.05) decreased in radish leaves after PET-MP treatment. Malondialdehyde (MDA) content in the leaves of radish plants significantly increased, indicating that the plant was facing abiotic stress in PET-MP treatment. This study advances understanding of MP-induced phytotoxicity and highlights its potential implications for food safety in agroecosystems.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-01039-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-025-01039-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-025-01039-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
塑料在环境中的广泛使用和处置不当导致了微塑料污染。聚对苯二甲酸乙二醇酯(PET)塑料被广泛用作一次性塑料,这些塑料的大量使用正在污染水生和陆地环境。这些塑料碎片在农业用地上的运输增加了作物生产和食品安全的风险。因此,本研究旨在评价聚对苯二甲酸乙二醇酯微塑料(PET-MPs)对植物生长、养分吸收和生理胁迫反应的影响。研究了PET-MPs (0.1 g/L)对萝卜(Raphanus sativus)和胡萝卜(Daucus carota var. sativa)在半强度Hoagland溶液中生长一周的短期影响。PET-MPs对植物生物量和养分吸收无显著影响。与对照相比,经PET-MP处理的两株植株根系中Cu、Fe、Mn、Zn等微量元素含量均显著增加,而茎部中Cu、Fe、Mn和Zn含量均显著降低。虽然植物短期暴露于PET-MPs对植物生物量和养分吸收没有显著影响,但在生理应激反应中观察到显著差异。经PET-MP处理后,萝卜叶片叶绿素a和b含量显著降低(p < 0.05)。萝卜叶片丙二醛(MDA)含量显著升高,表明在PET-MP处理下,萝卜植株面临非生物胁迫。这项研究促进了对mp诱导的植物毒性的理解,并强调了其对农业生态系统中食品安全的潜在影响。
Effect of polyethylene terephthalate (PET) microplastics on radish and carrot growth, nutrient uptake, and physiological stress responses
The widespread use and improper disposal of plastics in the environment lead to microplastic (MP) pollution. Polyethylene terephthalate (PET) plastics are widely used as single-use plastics, and the mass use of these plastics is contaminating aquatic and terrestrial environments. The transportation of those plastic fragments on agricultural land increases the risk to crop production and food safety. Therefore, the study aimed to evaluate the effect of polyethylene terephthalate microplastics (PET-MPs) on plant growth, nutrient uptake, and physiological stress responses. A short-term effect of PET-MPs (0.1 g/L) on plant growth was assessed using radish (Raphanus sativus) and carrot (Daucus carota var. sativa) grown in half-strength Hoagland solution for one week. PET-MPs did not significantly affect plant biomass and nutrient uptake by plants. Micronutrients such as Cu, Fe, Mn, and Zn were mostly increased in roots and decreased in shoot samples of both plants with PET-MP treatment compared to the control. Although short-term exposure of plants to PET-MPs did not significantly affect plant biomass and nutrient uptake, a significant difference was observed in the physiological stress responses. Chlorophyll a and b contents were significantly (p < 0.05) decreased in radish leaves after PET-MP treatment. Malondialdehyde (MDA) content in the leaves of radish plants significantly increased, indicating that the plant was facing abiotic stress in PET-MP treatment. This study advances understanding of MP-induced phytotoxicity and highlights its potential implications for food safety in agroecosystems.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.