基于Ensemble MHD模型的2024年5月事件的耀斑能量学、日冕物质抛射和日球层传播

IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Brigitte Schmieder, Jinhan Guo, Guillaume Aulanier, Anwesha Maharana, Stefaan Poedts
{"title":"基于Ensemble MHD模型的2024年5月事件的耀斑能量学、日冕物质抛射和日球层传播","authors":"Brigitte Schmieder,&nbsp;Jinhan Guo,&nbsp;Guillaume Aulanier,&nbsp;Anwesha Maharana,&nbsp;Stefaan Poedts","doi":"10.1007/s11207-025-02553-6","DOIUrl":null,"url":null,"abstract":"<div><p>Many questions must be answered before understanding the relationship between the emerging magnetic flux through the solar surface and the extreme geoeffective events. The main ingredients for getting X-ray class flares and large interplanetary Coronal Mass Ejections (CMEs) are the buildup of electric current in the corona, the existence of magnetic free energy, magnetic energy/helicity ratio, twist, and magnetic stress in active regions (ARs). The upper limit of solar energy in the space research era, as well as the potential for experiencing superflares and extreme solar events, can be predicted using MHD simulations of CMEs.</p><p>To address this problem, we consider the recent events of May 2024 and use three MHD models:</p><p>1) OHM (“Observationally driven High order scheme Magnetohydrodynamic code”) for investigating the magnetic evolutions at a synthetic dipole structure.</p><p>2) TMF (time-dependent magneto-friction) for setting up an initial non-potential magnetic field in the active region. A zero-beta MHD model for tracing the magnetic evolution of active regions.</p><p>3) EUHFORIA (“European heliospheric forecasting information asset”) for interplanetary CME propagations.</p><p>For the eruptive flares with CMEs, magnetic solar energy is computed along with data-constrained MHD simulations for the May 2024 events. We show the consistency between the data-initiated, realistic simulation of the May 2024 big event and energy scalings from an idealised simulation of a bipolar eruption using OHM. The estimated free magnetic energy did not surpass <span>\\(5.2 \\times 10^{32}\\text{ erg}\\)</span>. Good arrival time predictions (<span>\\(&lt;3\\)</span> hours) are achieved with the EUHFORIA simulation with the cone model. We note the interest in coupling all the chains of codes from the Sun to the Earth and developing different approaches to test the results.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flare Energetics, CME Launch and Heliospheric Propagation for the May 2024 Events, as Derived from Ensemble MHD Modelling\",\"authors\":\"Brigitte Schmieder,&nbsp;Jinhan Guo,&nbsp;Guillaume Aulanier,&nbsp;Anwesha Maharana,&nbsp;Stefaan Poedts\",\"doi\":\"10.1007/s11207-025-02553-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many questions must be answered before understanding the relationship between the emerging magnetic flux through the solar surface and the extreme geoeffective events. The main ingredients for getting X-ray class flares and large interplanetary Coronal Mass Ejections (CMEs) are the buildup of electric current in the corona, the existence of magnetic free energy, magnetic energy/helicity ratio, twist, and magnetic stress in active regions (ARs). The upper limit of solar energy in the space research era, as well as the potential for experiencing superflares and extreme solar events, can be predicted using MHD simulations of CMEs.</p><p>To address this problem, we consider the recent events of May 2024 and use three MHD models:</p><p>1) OHM (“Observationally driven High order scheme Magnetohydrodynamic code”) for investigating the magnetic evolutions at a synthetic dipole structure.</p><p>2) TMF (time-dependent magneto-friction) for setting up an initial non-potential magnetic field in the active region. A zero-beta MHD model for tracing the magnetic evolution of active regions.</p><p>3) EUHFORIA (“European heliospheric forecasting information asset”) for interplanetary CME propagations.</p><p>For the eruptive flares with CMEs, magnetic solar energy is computed along with data-constrained MHD simulations for the May 2024 events. We show the consistency between the data-initiated, realistic simulation of the May 2024 big event and energy scalings from an idealised simulation of a bipolar eruption using OHM. The estimated free magnetic energy did not surpass <span>\\\\(5.2 \\\\times 10^{32}\\\\text{ erg}\\\\)</span>. Good arrival time predictions (<span>\\\\(&lt;3\\\\)</span> hours) are achieved with the EUHFORIA simulation with the cone model. We note the interest in coupling all the chains of codes from the Sun to the Earth and developing different approaches to test the results.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 9\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-025-02553-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02553-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在理解通过太阳表面的新出现的磁通量与极端地球有效事件之间的关系之前,必须回答许多问题。产生x射线级耀斑和大型行星际日冕物质抛射(cme)的主要原因是日冕中电流的积累、磁自由能的存在、磁能/螺旋比、扭曲和活动区域(ARs)的磁应力。利用MHD模拟日冕物质抛射,可以预测空间研究时代的太阳能量上限,以及发生超级耀斑和极端太阳事件的可能性。为了解决这个问题,我们考虑了最近发生在2024年5月的事件,并使用了三个MHD模型:1)OHM(“观测驱动的高阶格式磁流体动力学代码”)来研究合成偶极子结构的磁演化。2)在有源区建立初始非势磁场的时相关磁摩擦(TMF)。追踪活跃区磁演化的零beta MHD模型。3) EUHFORIA(“欧洲日球层预报信息资产”)用于星际CME传播。对于日冕物质抛射的爆发耀斑,利用数据受限的MHD模拟计算了2024年5月事件的太阳磁场能量。我们展示了数据发起的、对2024年5月大事件的真实模拟与使用欧姆法对两极喷发进行理想化模拟的能量缩放之间的一致性。估计的自由磁能不超过\(5.2 \times 10^{32}\text{ erg}\)。使用锥形模型的EUHFORIA模拟实现了良好的到达时间预测(\(<3\)小时)。我们注意到对从太阳到地球的所有代码链的耦合以及开发不同方法来测试结果的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flare Energetics, CME Launch and Heliospheric Propagation for the May 2024 Events, as Derived from Ensemble MHD Modelling

Flare Energetics, CME Launch and Heliospheric Propagation for the May 2024 Events, as Derived from Ensemble MHD Modelling

Many questions must be answered before understanding the relationship between the emerging magnetic flux through the solar surface and the extreme geoeffective events. The main ingredients for getting X-ray class flares and large interplanetary Coronal Mass Ejections (CMEs) are the buildup of electric current in the corona, the existence of magnetic free energy, magnetic energy/helicity ratio, twist, and magnetic stress in active regions (ARs). The upper limit of solar energy in the space research era, as well as the potential for experiencing superflares and extreme solar events, can be predicted using MHD simulations of CMEs.

To address this problem, we consider the recent events of May 2024 and use three MHD models:

1) OHM (“Observationally driven High order scheme Magnetohydrodynamic code”) for investigating the magnetic evolutions at a synthetic dipole structure.

2) TMF (time-dependent magneto-friction) for setting up an initial non-potential magnetic field in the active region. A zero-beta MHD model for tracing the magnetic evolution of active regions.

3) EUHFORIA (“European heliospheric forecasting information asset”) for interplanetary CME propagations.

For the eruptive flares with CMEs, magnetic solar energy is computed along with data-constrained MHD simulations for the May 2024 events. We show the consistency between the data-initiated, realistic simulation of the May 2024 big event and energy scalings from an idealised simulation of a bipolar eruption using OHM. The estimated free magnetic energy did not surpass \(5.2 \times 10^{32}\text{ erg}\). Good arrival time predictions (\(<3\) hours) are achieved with the EUHFORIA simulation with the cone model. We note the interest in coupling all the chains of codes from the Sun to the Earth and developing different approaches to test the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信