标度双曲Clifford代数

IF 1.2 2区 数学 Q2 MATHEMATICS, APPLIED
Ilwoo Cho
{"title":"标度双曲Clifford代数","authors":"Ilwoo Cho","doi":"10.1007/s00006-025-01393-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, starting from recently known scaled hypercomplexes <span>\\({\\mathbb {H}}_{t}\\)</span>, we define scaled hyperbolics <span>\\({\\mathbb {D}}_{t}\\)</span> for scales <span>\\(t\\in {\\mathbb {R}}\\)</span>. In particular, the <span>\\(\\left( -1\\right) \\)</span>-scaled hyperbolics <span>\\({\\mathbb {D}}_{-1}\\)</span> is isomorphic to the complex field <span>\\({\\mathbb {C}}\\)</span>, the 0-scaled hyperbolics <span>\\({\\mathbb {D}}_{0}\\)</span> is isomorphic to the dual numbers <span>\\({\\textbf{D}}\\)</span>, and the 1-scaled hyperbolics <span>\\({\\mathbb {D}}_{1}\\)</span> is isomorphic to the classical hyperbolic numbers <span>\\({\\mathcal {D}}\\)</span>. For any fixed <span>\\(t\\in {\\mathbb {R}}\\)</span>, initiated from the <i>t</i>-scaled hyperbolics <span>\\({\\mathbb {D}}_{t}\\)</span>, we construct the <i>t</i>-scaled-hyperbolic Clifford algebra <span>\\({\\mathscr {C}}_{t}=\\underrightarrow{\\textrm{lim}}{\\mathscr {C}}_{t,n}\\)</span>, where <span>\\({\\mathscr {C}}_{t,n}\\)</span> are the <i>n</i>-th <i>t</i>-scaled-hyperbolic Clifford algebras for all <span>\\(n\\in {\\mathbb {N}}\\cup \\left\\{ 0\\right\\} \\)</span>, with <span>\\({\\mathscr {C}}_{t,0}={\\mathbb {R}}\\)</span> and <span>\\({\\mathscr {C}}_{t,1}={\\mathbb {D}}_{t}\\)</span>, just like the classical Clifford algebra <span>\\({\\mathscr {C}}={\\mathscr {C}}_{-1}\\)</span>. To analyze this <span>\\({\\mathbb {R}}\\)</span>-algebra <span>\\({\\mathscr {C}}_{t}\\)</span>, we establish an operator algebra <span>\\({\\mathscr {M}}_{t}\\)</span> (over <span>\\({\\mathbb {C}}\\)</span>, as usual), containing <span>\\({\\mathscr {C}}_{t}\\)</span>, and then construct a free-probabilistic structure <span>\\(\\left( {\\mathscr {M}}_{t},\\tau _{t}\\right) \\)</span>. From the operator theory, operator algebra and free probability on <span>\\({\\mathscr {M}}_{t}\\)</span>, we apply these analysis for studying <span>\\({\\mathscr {C}}_{t}.\\)</span></p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaled-Hyperbolic Clifford Algebras\",\"authors\":\"Ilwoo Cho\",\"doi\":\"10.1007/s00006-025-01393-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, starting from recently known scaled hypercomplexes <span>\\\\({\\\\mathbb {H}}_{t}\\\\)</span>, we define scaled hyperbolics <span>\\\\({\\\\mathbb {D}}_{t}\\\\)</span> for scales <span>\\\\(t\\\\in {\\\\mathbb {R}}\\\\)</span>. In particular, the <span>\\\\(\\\\left( -1\\\\right) \\\\)</span>-scaled hyperbolics <span>\\\\({\\\\mathbb {D}}_{-1}\\\\)</span> is isomorphic to the complex field <span>\\\\({\\\\mathbb {C}}\\\\)</span>, the 0-scaled hyperbolics <span>\\\\({\\\\mathbb {D}}_{0}\\\\)</span> is isomorphic to the dual numbers <span>\\\\({\\\\textbf{D}}\\\\)</span>, and the 1-scaled hyperbolics <span>\\\\({\\\\mathbb {D}}_{1}\\\\)</span> is isomorphic to the classical hyperbolic numbers <span>\\\\({\\\\mathcal {D}}\\\\)</span>. For any fixed <span>\\\\(t\\\\in {\\\\mathbb {R}}\\\\)</span>, initiated from the <i>t</i>-scaled hyperbolics <span>\\\\({\\\\mathbb {D}}_{t}\\\\)</span>, we construct the <i>t</i>-scaled-hyperbolic Clifford algebra <span>\\\\({\\\\mathscr {C}}_{t}=\\\\underrightarrow{\\\\textrm{lim}}{\\\\mathscr {C}}_{t,n}\\\\)</span>, where <span>\\\\({\\\\mathscr {C}}_{t,n}\\\\)</span> are the <i>n</i>-th <i>t</i>-scaled-hyperbolic Clifford algebras for all <span>\\\\(n\\\\in {\\\\mathbb {N}}\\\\cup \\\\left\\\\{ 0\\\\right\\\\} \\\\)</span>, with <span>\\\\({\\\\mathscr {C}}_{t,0}={\\\\mathbb {R}}\\\\)</span> and <span>\\\\({\\\\mathscr {C}}_{t,1}={\\\\mathbb {D}}_{t}\\\\)</span>, just like the classical Clifford algebra <span>\\\\({\\\\mathscr {C}}={\\\\mathscr {C}}_{-1}\\\\)</span>. To analyze this <span>\\\\({\\\\mathbb {R}}\\\\)</span>-algebra <span>\\\\({\\\\mathscr {C}}_{t}\\\\)</span>, we establish an operator algebra <span>\\\\({\\\\mathscr {M}}_{t}\\\\)</span> (over <span>\\\\({\\\\mathbb {C}}\\\\)</span>, as usual), containing <span>\\\\({\\\\mathscr {C}}_{t}\\\\)</span>, and then construct a free-probabilistic structure <span>\\\\(\\\\left( {\\\\mathscr {M}}_{t},\\\\tau _{t}\\\\right) \\\\)</span>. From the operator theory, operator algebra and free probability on <span>\\\\({\\\\mathscr {M}}_{t}\\\\)</span>, we apply these analysis for studying <span>\\\\({\\\\mathscr {C}}_{t}.\\\\)</span></p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01393-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01393-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文从最近已知的尺度超复合体\({\mathbb {H}}_{t}\)出发,定义尺度\(t\in {\mathbb {R}}\)的尺度双曲\({\mathbb {D}}_{t}\)。其中,\(\left( -1\right) \)比例双曲\({\mathbb {D}}_{-1}\)与复域\({\mathbb {C}}\)同构,0比例双曲\({\mathbb {D}}_{0}\)与对偶数\({\textbf{D}}\)同构,1比例双曲\({\mathbb {D}}_{1}\)与经典双曲数\({\mathcal {D}}\)同构。对于任何固定的\(t\in {\mathbb {R}}\),从t尺度双曲\({\mathbb {D}}_{t}\)开始,我们构造t尺度双曲Clifford代数\({\mathscr {C}}_{t}=\underrightarrow{\textrm{lim}}{\mathscr {C}}_{t,n}\),其中\({\mathscr {C}}_{t,n}\)是所有\(n\in {\mathbb {N}}\cup \left\{ 0\right\} \)的第n个t尺度双曲Clifford代数,具有\({\mathscr {C}}_{t,0}={\mathbb {R}}\)和\({\mathscr {C}}_{t,1}={\mathbb {D}}_{t}\),就像经典的Clifford代数\({\mathscr {C}}={\mathscr {C}}_{-1}\)一样。为了分析这个\({\mathbb {R}}\) -代数\({\mathscr {C}}_{t}\),我们建立一个包含\({\mathscr {C}}_{t}\)的算子代数\({\mathscr {M}}_{t}\)(像往常一样在\({\mathbb {C}}\)上),然后构造一个自由概率结构\(\left( {\mathscr {M}}_{t},\tau _{t}\right) \)。从算子理论、算子代数和\({\mathscr {M}}_{t}\)上的自由概率出发,应用这些分析方法进行研究 \({\mathscr {C}}_{t}.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaled-Hyperbolic Clifford Algebras

In this paper, starting from recently known scaled hypercomplexes \({\mathbb {H}}_{t}\), we define scaled hyperbolics \({\mathbb {D}}_{t}\) for scales \(t\in {\mathbb {R}}\). In particular, the \(\left( -1\right) \)-scaled hyperbolics \({\mathbb {D}}_{-1}\) is isomorphic to the complex field \({\mathbb {C}}\), the 0-scaled hyperbolics \({\mathbb {D}}_{0}\) is isomorphic to the dual numbers \({\textbf{D}}\), and the 1-scaled hyperbolics \({\mathbb {D}}_{1}\) is isomorphic to the classical hyperbolic numbers \({\mathcal {D}}\). For any fixed \(t\in {\mathbb {R}}\), initiated from the t-scaled hyperbolics \({\mathbb {D}}_{t}\), we construct the t-scaled-hyperbolic Clifford algebra \({\mathscr {C}}_{t}=\underrightarrow{\textrm{lim}}{\mathscr {C}}_{t,n}\), where \({\mathscr {C}}_{t,n}\) are the n-th t-scaled-hyperbolic Clifford algebras for all \(n\in {\mathbb {N}}\cup \left\{ 0\right\} \), with \({\mathscr {C}}_{t,0}={\mathbb {R}}\) and \({\mathscr {C}}_{t,1}={\mathbb {D}}_{t}\), just like the classical Clifford algebra \({\mathscr {C}}={\mathscr {C}}_{-1}\). To analyze this \({\mathbb {R}}\)-algebra \({\mathscr {C}}_{t}\), we establish an operator algebra \({\mathscr {M}}_{t}\) (over \({\mathbb {C}}\), as usual), containing \({\mathscr {C}}_{t}\), and then construct a free-probabilistic structure \(\left( {\mathscr {M}}_{t},\tau _{t}\right) \). From the operator theory, operator algebra and free probability on \({\mathscr {M}}_{t}\), we apply these analysis for studying \({\mathscr {C}}_{t}.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信