原始黑洞产生超辐射暗物质:多模态和引力波发射的影响

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Nayun Jia, Shou-Shan Bao, Chen Zhang, Hong Zhang, Xin Zhang
{"title":"原始黑洞产生超辐射暗物质:多模态和引力波发射的影响","authors":"Nayun Jia,&nbsp;Shou-Shan Bao,&nbsp;Chen Zhang,&nbsp;Hong Zhang,&nbsp;Xin Zhang","doi":"10.1007/JHEP09(2025)195","DOIUrl":null,"url":null,"abstract":"<p>Rotating primordial black holes (PBHs) in the early universe can emit particles through superradiance, a process particularly efficient when the particle’s Compton wavelength is comparable to the PBH’s gravitational radius. Superradiance leads to an exponential growth of particle occupation numbers in gravitationally bound states. We present an analysis of heavy bosonic dark matter (DM) production through three gravitational mechanisms: Hawking radiation, superradiant instabilities, and ultraviolet (UV) freeze-in. We consider PBHs that evaporate before Big Bang Nucleosynthesis (BBN). For both scalar and vector DM, our analysis incorporates the evolution of a second superradiant mode. We demonstrate that the growth of a second superradiant mode causes the decay of the first mode, and thus the second mode cannot further enhance the DM abundance beyond that already achieved by the first mode. Our study also reveals that while superradiance generally enhances DM production, gravitational wave (GW) emission from the superradiant cloud may significantly modify this picture. For scalar DM, GW emission reduces the parameter space where superradiance effectively augments relic abundance. For vector DM, rapid GW emission from the superradiant cloud may yield relic abundances below those achieved through Hawking radiation alone. These findings demonstrate that multiple-mode effect and GW emission play critical roles in modeling DM production from PBHs in the early universe.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP09(2025)195.pdf","citationCount":"0","resultStr":"{\"title\":\"Superradiant dark matter production from primordial black holes: impact of multiple modes and gravitational wave emission\",\"authors\":\"Nayun Jia,&nbsp;Shou-Shan Bao,&nbsp;Chen Zhang,&nbsp;Hong Zhang,&nbsp;Xin Zhang\",\"doi\":\"10.1007/JHEP09(2025)195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rotating primordial black holes (PBHs) in the early universe can emit particles through superradiance, a process particularly efficient when the particle’s Compton wavelength is comparable to the PBH’s gravitational radius. Superradiance leads to an exponential growth of particle occupation numbers in gravitationally bound states. We present an analysis of heavy bosonic dark matter (DM) production through three gravitational mechanisms: Hawking radiation, superradiant instabilities, and ultraviolet (UV) freeze-in. We consider PBHs that evaporate before Big Bang Nucleosynthesis (BBN). For both scalar and vector DM, our analysis incorporates the evolution of a second superradiant mode. We demonstrate that the growth of a second superradiant mode causes the decay of the first mode, and thus the second mode cannot further enhance the DM abundance beyond that already achieved by the first mode. Our study also reveals that while superradiance generally enhances DM production, gravitational wave (GW) emission from the superradiant cloud may significantly modify this picture. For scalar DM, GW emission reduces the parameter space where superradiance effectively augments relic abundance. For vector DM, rapid GW emission from the superradiant cloud may yield relic abundances below those achieved through Hawking radiation alone. These findings demonstrate that multiple-mode effect and GW emission play critical roles in modeling DM production from PBHs in the early universe.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP09(2025)195.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP09(2025)195\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP09(2025)195","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

早期宇宙中旋转的原始黑洞(PBH)可以通过超辐射发射粒子,当粒子的康普顿波长与PBH的引力半径相当时,这一过程特别有效。超辐射导致粒子在引力束缚态中的占据数呈指数增长。我们通过三种引力机制:霍金辐射、超辐射不稳定性和紫外线(UV)冻结来分析重玻色子暗物质(DM)的产生。我们考虑在大爆炸核合成(BBN)之前蒸发的pbh。对于标量和矢量DM,我们的分析包含了第二超辐射模态的演变。我们证明了第二超辐射模态的增长导致第一模态的衰减,因此第二模态不能在第一模态已经达到的基础上进一步提高DM丰度。我们的研究还表明,虽然超辐射通常会增加DM的产生,但来自超辐射云的引力波(GW)发射可能会显著地改变这一图景。对于标量DM, GW辐射减小了参数空间,其中超辐射有效地增加了遗迹丰度。对于矢量DM,来自超辐射云的快速GW发射可能产生的遗迹丰度低于单独通过霍金辐射获得的丰度。这些发现表明,多模效应和GW发射在模拟早期宇宙中pbh产生DM的过程中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superradiant dark matter production from primordial black holes: impact of multiple modes and gravitational wave emission

Rotating primordial black holes (PBHs) in the early universe can emit particles through superradiance, a process particularly efficient when the particle’s Compton wavelength is comparable to the PBH’s gravitational radius. Superradiance leads to an exponential growth of particle occupation numbers in gravitationally bound states. We present an analysis of heavy bosonic dark matter (DM) production through three gravitational mechanisms: Hawking radiation, superradiant instabilities, and ultraviolet (UV) freeze-in. We consider PBHs that evaporate before Big Bang Nucleosynthesis (BBN). For both scalar and vector DM, our analysis incorporates the evolution of a second superradiant mode. We demonstrate that the growth of a second superradiant mode causes the decay of the first mode, and thus the second mode cannot further enhance the DM abundance beyond that already achieved by the first mode. Our study also reveals that while superradiance generally enhances DM production, gravitational wave (GW) emission from the superradiant cloud may significantly modify this picture. For scalar DM, GW emission reduces the parameter space where superradiance effectively augments relic abundance. For vector DM, rapid GW emission from the superradiant cloud may yield relic abundances below those achieved through Hawking radiation alone. These findings demonstrate that multiple-mode effect and GW emission play critical roles in modeling DM production from PBHs in the early universe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信