硅富勒烯吸附有机硫的计算研究:改善环境安全的意义

IF 3.3 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Silicon Pub Date : 2025-05-26 DOI:10.1007/s12633-025-03349-w
Kama Hosea Gobak, Saika Alamin A., Musa Runde, Karwan Wasman Qadir, Muhammad N. Abubakar
{"title":"硅富勒烯吸附有机硫的计算研究:改善环境安全的意义","authors":"Kama Hosea Gobak,&nbsp;Saika Alamin A.,&nbsp;Musa Runde,&nbsp;Karwan Wasman Qadir,&nbsp;Muhammad N. Abubakar","doi":"10.1007/s12633-025-03349-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the adsorption of dibenzothiophene (DBT) on newly tailored silicon-based fullerene materials for environmental remediation and sensing applications. DBT is a polycyclic aromatic hydrocarbon (PAH) containing sulfur, which is a common impurity present in fossil fuels, automobile emissions, natural resources, and industrial discharges. It contributes to atmospheric acidity, a pioneer of acid rain. Its high toxicity causes lung diseases that affects humans and aquatic animals. The need for its detection and removal is critical to remediating these challenges. This study employs the density functional theory (DFT) approach at the PBE0-D3/LanL2DZ computational method to evaluate the interaction of DBT on newly tailored silicon-based fullerene materials doped with Cu, Ir, and Pt (DBT-Si<sub>59</sub>Cu, DBT-Si<sub>59</sub>Ir, and DBT-Si<sub>59</sub>Pt). The adsorption energies observed ranged from -1.966 to -1.323 eV, indicating strong chemisorption of DBT on all modified silicon-based fullerenes. Si<sub>59</sub>Ir showed the strongest adsorption (-1.966 eV), followed by Si<sub>59</sub>Pt (-1.415 eV) and Si<sub>59</sub>Cu (-1.323 eV). Electronic structure analysis revealed significant charge transfer and increment in dipole moment upon DBT adsorption, with values of 10.415, 10.130, and 8.342 D for DBT-Si<sub>59</sub>Ir, DBT-Si<sub>59</sub>Pt, and DBT-Si<sub>59</sub>Cu, respectively. The HOMO–LUMO energy gaps decreased after adsorption from 0.317, 0.541and 0.461 eV in Si<sub>59</sub>Cu, Si<sub>59</sub>Ir, and Si<sub>59</sub>Pt to 0.028, 0.049, and 0.163 eV in DBT-Si<sub>59</sub>Cu, DBT-Si<sub>59</sub>Ir, and DBT-Si<sub>59</sub>Pt, respectively. This indicates enhanced reactivity. Our findings highlight the effectiveness of transition metal-doped silicon-based fullerenes in enhancing the efficiency of DBT capture. The strong adsorption characteristics and electronic properties of these materials suggest their potential as efficient adsorbents for DBT removal in environmental applications. This study introduces a novel application of silicon-based fullerenes for DBT adsorption, providing insights into their potential for future nanomaterial-based desulfurization strategies.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 10","pages":"2299 - 2312"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Study of Organosulfur Adsorption on Silicon Fullerenes: Implications for Improving Environmental Safety\",\"authors\":\"Kama Hosea Gobak,&nbsp;Saika Alamin A.,&nbsp;Musa Runde,&nbsp;Karwan Wasman Qadir,&nbsp;Muhammad N. Abubakar\",\"doi\":\"10.1007/s12633-025-03349-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the adsorption of dibenzothiophene (DBT) on newly tailored silicon-based fullerene materials for environmental remediation and sensing applications. DBT is a polycyclic aromatic hydrocarbon (PAH) containing sulfur, which is a common impurity present in fossil fuels, automobile emissions, natural resources, and industrial discharges. It contributes to atmospheric acidity, a pioneer of acid rain. Its high toxicity causes lung diseases that affects humans and aquatic animals. The need for its detection and removal is critical to remediating these challenges. This study employs the density functional theory (DFT) approach at the PBE0-D3/LanL2DZ computational method to evaluate the interaction of DBT on newly tailored silicon-based fullerene materials doped with Cu, Ir, and Pt (DBT-Si<sub>59</sub>Cu, DBT-Si<sub>59</sub>Ir, and DBT-Si<sub>59</sub>Pt). The adsorption energies observed ranged from -1.966 to -1.323 eV, indicating strong chemisorption of DBT on all modified silicon-based fullerenes. Si<sub>59</sub>Ir showed the strongest adsorption (-1.966 eV), followed by Si<sub>59</sub>Pt (-1.415 eV) and Si<sub>59</sub>Cu (-1.323 eV). Electronic structure analysis revealed significant charge transfer and increment in dipole moment upon DBT adsorption, with values of 10.415, 10.130, and 8.342 D for DBT-Si<sub>59</sub>Ir, DBT-Si<sub>59</sub>Pt, and DBT-Si<sub>59</sub>Cu, respectively. The HOMO–LUMO energy gaps decreased after adsorption from 0.317, 0.541and 0.461 eV in Si<sub>59</sub>Cu, Si<sub>59</sub>Ir, and Si<sub>59</sub>Pt to 0.028, 0.049, and 0.163 eV in DBT-Si<sub>59</sub>Cu, DBT-Si<sub>59</sub>Ir, and DBT-Si<sub>59</sub>Pt, respectively. This indicates enhanced reactivity. Our findings highlight the effectiveness of transition metal-doped silicon-based fullerenes in enhancing the efficiency of DBT capture. The strong adsorption characteristics and electronic properties of these materials suggest their potential as efficient adsorbents for DBT removal in environmental applications. This study introduces a novel application of silicon-based fullerenes for DBT adsorption, providing insights into their potential for future nanomaterial-based desulfurization strategies.</p></div>\",\"PeriodicalId\":776,\"journal\":{\"name\":\"Silicon\",\"volume\":\"17 10\",\"pages\":\"2299 - 2312\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12633-025-03349-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-025-03349-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了二苯并噻吩(DBT)在新定制的硅基富勒烯材料上的吸附,用于环境修复和传感应用。DBT是一种含硫的多环芳烃(PAH),是化石燃料、汽车尾气、自然资源和工业排放中常见的杂质。它导致大气酸度,是酸雨的先驱。它的高毒性会导致影响人类和水生动物的肺部疾病。检测和清除这种病毒对解决这些挑战至关重要。本研究采用密度泛函理论(DFT)方法在PBE0-D3/LanL2DZ计算方法中评估了DBT与新定制的掺杂Cu, Ir和Pt的硅基富勒烯材料(DBT- si59cu, DBT- si59ir和DBT- si59pt)的相互作用。观察到的吸附能范围为-1.966 ~ -1.323 eV,表明DBT在所有改性硅基富勒烯上都有很强的化学吸附。Si59Ir吸附效果最好(-1.966 eV),其次是Si59Pt (-1.415 eV)和Si59Cu (-1.323 eV)。电子结构分析表明,吸附DBT后,DBT- si59ir、DBT- si59pt和DBT- si59cu的电荷转移和偶极矩显著增加,分别为10.415、10.130和8.342 D。吸附后的HOMO-LUMO能隙分别从Si59Cu、Si59Ir和Si59Pt中的0.317、0.541和0.461 eV减小到DBT-Si59Cu、DBT-Si59Ir和DBT-Si59Pt中的0.028、0.049和0.163 eV。这表明反应性增强。我们的研究结果强调了过渡金属掺杂硅基富勒烯在提高DBT捕获效率方面的有效性。这些材料的强吸附特性和电子特性表明它们有潜力成为环境应用中去除DBT的高效吸附剂。本研究介绍了硅基富勒烯在DBT吸附中的新应用,为其未来纳米材料脱硫策略的潜力提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Study of Organosulfur Adsorption on Silicon Fullerenes: Implications for Improving Environmental Safety

This study investigates the adsorption of dibenzothiophene (DBT) on newly tailored silicon-based fullerene materials for environmental remediation and sensing applications. DBT is a polycyclic aromatic hydrocarbon (PAH) containing sulfur, which is a common impurity present in fossil fuels, automobile emissions, natural resources, and industrial discharges. It contributes to atmospheric acidity, a pioneer of acid rain. Its high toxicity causes lung diseases that affects humans and aquatic animals. The need for its detection and removal is critical to remediating these challenges. This study employs the density functional theory (DFT) approach at the PBE0-D3/LanL2DZ computational method to evaluate the interaction of DBT on newly tailored silicon-based fullerene materials doped with Cu, Ir, and Pt (DBT-Si59Cu, DBT-Si59Ir, and DBT-Si59Pt). The adsorption energies observed ranged from -1.966 to -1.323 eV, indicating strong chemisorption of DBT on all modified silicon-based fullerenes. Si59Ir showed the strongest adsorption (-1.966 eV), followed by Si59Pt (-1.415 eV) and Si59Cu (-1.323 eV). Electronic structure analysis revealed significant charge transfer and increment in dipole moment upon DBT adsorption, with values of 10.415, 10.130, and 8.342 D for DBT-Si59Ir, DBT-Si59Pt, and DBT-Si59Cu, respectively. The HOMO–LUMO energy gaps decreased after adsorption from 0.317, 0.541and 0.461 eV in Si59Cu, Si59Ir, and Si59Pt to 0.028, 0.049, and 0.163 eV in DBT-Si59Cu, DBT-Si59Ir, and DBT-Si59Pt, respectively. This indicates enhanced reactivity. Our findings highlight the effectiveness of transition metal-doped silicon-based fullerenes in enhancing the efficiency of DBT capture. The strong adsorption characteristics and electronic properties of these materials suggest their potential as efficient adsorbents for DBT removal in environmental applications. This study introduces a novel application of silicon-based fullerenes for DBT adsorption, providing insights into their potential for future nanomaterial-based desulfurization strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信