几何代数中的广义简并Clifford群和Lipschitz群

IF 1.2 2区 数学 Q2 MATHEMATICS, APPLIED
Ekaterina Filimoshina, Dmitry Shirokov
{"title":"几何代数中的广义简并Clifford群和Lipschitz群","authors":"Ekaterina Filimoshina,&nbsp;Dmitry Shirokov","doi":"10.1007/s00006-025-01390-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces and studies generalized degenerate Clifford and Lipschitz groups in geometric (Clifford) algebras. These Lie groups preserve the direct sums of the subspaces determined by the grade involution and reversion under the adjoint and twisted adjoint representations in degenerate geometric algebras. We prove that the generalized degenerate Clifford and Lipschitz groups can be defined using centralizers and twisted centralizers of fixed grades subspaces and the norm functions that are widely used in the theory of spin groups. We study the relations between these groups and consider them in the particular cases of plane-based geometric algebras and Grassmann algebras. The corresponding Lie algebras are studied. The presented groups are interesting for the study of generalized degenerate spin groups and applications in computer science, physics, and engineering.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Degenerate Clifford and Lipschitz Groups in Geometric Algebras\",\"authors\":\"Ekaterina Filimoshina,&nbsp;Dmitry Shirokov\",\"doi\":\"10.1007/s00006-025-01390-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces and studies generalized degenerate Clifford and Lipschitz groups in geometric (Clifford) algebras. These Lie groups preserve the direct sums of the subspaces determined by the grade involution and reversion under the adjoint and twisted adjoint representations in degenerate geometric algebras. We prove that the generalized degenerate Clifford and Lipschitz groups can be defined using centralizers and twisted centralizers of fixed grades subspaces and the norm functions that are widely used in the theory of spin groups. We study the relations between these groups and consider them in the particular cases of plane-based geometric algebras and Grassmann algebras. The corresponding Lie algebras are studied. The presented groups are interesting for the study of generalized degenerate spin groups and applications in computer science, physics, and engineering.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01390-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01390-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

介绍并研究了几何(Clifford)代数中的广义简并Clifford群和Lipschitz群。这些李群保留了退化几何代数在伴伴表示和扭曲伴伴表示下由等级对合和反转所决定的子空间的直接和。我们证明了广义简并Clifford群和Lipschitz群可以用自旋群理论中广泛使用的固定等级子空间的中心子和扭转中心子以及范数函数来定义。我们研究了这些群之间的关系,并在平面几何代数和Grassmann代数的特殊情况下考虑了它们。研究了相应的李代数。这些群对于研究广义简并自旋群及其在计算机科学、物理和工程中的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Degenerate Clifford and Lipschitz Groups in Geometric Algebras

This paper introduces and studies generalized degenerate Clifford and Lipschitz groups in geometric (Clifford) algebras. These Lie groups preserve the direct sums of the subspaces determined by the grade involution and reversion under the adjoint and twisted adjoint representations in degenerate geometric algebras. We prove that the generalized degenerate Clifford and Lipschitz groups can be defined using centralizers and twisted centralizers of fixed grades subspaces and the norm functions that are widely used in the theory of spin groups. We study the relations between these groups and consider them in the particular cases of plane-based geometric algebras and Grassmann algebras. The corresponding Lie algebras are studied. The presented groups are interesting for the study of generalized degenerate spin groups and applications in computer science, physics, and engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信