正辛颤振:指标、希尔伯特级数和广义对称性

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
William Harding, Noppadol Mekareeya, Zhenghao Zhong
{"title":"正辛颤振:指标、希尔伯特级数和广义对称性","authors":"William Harding,&nbsp;Noppadol Mekareeya,&nbsp;Zhenghao Zhong","doi":"10.1007/JHEP09(2025)212","DOIUrl":null,"url":null,"abstract":"<p>We investigate generalised global symmetries in 3d <span>\\( \\mathcal{N}=4 \\)</span> orthosymplectic quiver gauge theories. Using the superconformal index, we identify a <i>D</i><sub>8</sub> categorical symmetry web in a class of theories featuring <span>\\( \\mathfrak{so}(2N)\\times \\mathfrak{usp}(2N) \\)</span> gauge algebra (at zero Chern-Simons levels) and <i>n</i> bifundamental half-hypermultiplets, analogous to ABJ-type models. As a distinct contribution, we improve the prescription, previously studied in the literature, for computing Coulomb branch Hilbert series of SO(<i>N</i>) gauge theories with <i>N</i><sub><i>f</i></sub> vector hypermultiplets. Our improved prescription extends these methods by incorporating fugacities for discrete zero-form symmetries — specifically charge conjugation and magnetic symmetries — and properly treating background magnetic fluxes for the flavour symmetry. This refinement enables calculations for various global forms (O(<i>N</i>)<sup>±</sup><i>,</i> Spin(<i>N</i>)<i>,</i> Pin(<i>N</i>)) and ensures consistency with the Coulomb branch limit of the superconformal index and known dualities. The proper treatment of fluxes is particularly essential for analysing orthosymplectic quivers where such a flavour symmetry is gauged. We verify our methods through several examples, including an analysis of the mapping of discrete symmetries under mirror symmetry for <i>T</i>[SO(<i>N</i>)] and <i>T</i>[USp(2<i>N</i>)] theories. The analysis also readily generalises to the <i>T</i><sub><i>ρ</i></sub>[SO(<i>N</i>)] and <i>T</i><sub><i>ρ</i></sub>[USp(2<i>N</i>)] theories associated with partition <i>ρ</i>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP09(2025)212.pdf","citationCount":"0","resultStr":"{\"title\":\"Orthosymplectic quivers: indices, Hilbert series, and generalised symmetries\",\"authors\":\"William Harding,&nbsp;Noppadol Mekareeya,&nbsp;Zhenghao Zhong\",\"doi\":\"10.1007/JHEP09(2025)212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate generalised global symmetries in 3d <span>\\\\( \\\\mathcal{N}=4 \\\\)</span> orthosymplectic quiver gauge theories. Using the superconformal index, we identify a <i>D</i><sub>8</sub> categorical symmetry web in a class of theories featuring <span>\\\\( \\\\mathfrak{so}(2N)\\\\times \\\\mathfrak{usp}(2N) \\\\)</span> gauge algebra (at zero Chern-Simons levels) and <i>n</i> bifundamental half-hypermultiplets, analogous to ABJ-type models. As a distinct contribution, we improve the prescription, previously studied in the literature, for computing Coulomb branch Hilbert series of SO(<i>N</i>) gauge theories with <i>N</i><sub><i>f</i></sub> vector hypermultiplets. Our improved prescription extends these methods by incorporating fugacities for discrete zero-form symmetries — specifically charge conjugation and magnetic symmetries — and properly treating background magnetic fluxes for the flavour symmetry. This refinement enables calculations for various global forms (O(<i>N</i>)<sup>±</sup><i>,</i> Spin(<i>N</i>)<i>,</i> Pin(<i>N</i>)) and ensures consistency with the Coulomb branch limit of the superconformal index and known dualities. The proper treatment of fluxes is particularly essential for analysing orthosymplectic quivers where such a flavour symmetry is gauged. We verify our methods through several examples, including an analysis of the mapping of discrete symmetries under mirror symmetry for <i>T</i>[SO(<i>N</i>)] and <i>T</i>[USp(2<i>N</i>)] theories. The analysis also readily generalises to the <i>T</i><sub><i>ρ</i></sub>[SO(<i>N</i>)] and <i>T</i><sub><i>ρ</i></sub>[USp(2<i>N</i>)] theories associated with partition <i>ρ</i>.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP09(2025)212.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP09(2025)212\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP09(2025)212","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

研究了三维\( \mathcal{N}=4 \)正辛颤振规范理论中的广义全局对称性。利用超共形指标,我们在一类具有\( \mathfrak{so}(2N)\times \mathfrak{usp}(2N) \)规范代数(在零Chern-Simons水平)和n个双基半超多重的理论中识别了一个D8范畴对称网,类似于abj型模型。作为一个独特的贡献,我们改进了先前在文献中研究的处方,用于计算具有Nf向量超多重态的SO(N)规范理论的库仑分支希尔伯特级数。我们改进的配方扩展了这些方法,纳入离散零形式对称的逸散性-特别是电荷共轭和磁对称-并适当地处理风味对称的背景磁通量。这种改进可以计算各种全局形式(O(N)±,Spin(N), Pin(N)),并确保与超共形指数的库仑分支极限和已知对偶性的一致性。对通量的适当处理对于分析正辛颤振是特别重要的,因为正辛颤振是测量这种风味对称性的地方。我们通过几个例子验证了我们的方法,包括对T[SO(N)]和T[USp(2N)]理论在镜像对称下的离散对称映射的分析。分析也很容易推广到与分割ρ相关的ρ[SO(N)]和ρ[USp(2N)]理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthosymplectic quivers: indices, Hilbert series, and generalised symmetries

We investigate generalised global symmetries in 3d \( \mathcal{N}=4 \) orthosymplectic quiver gauge theories. Using the superconformal index, we identify a D8 categorical symmetry web in a class of theories featuring \( \mathfrak{so}(2N)\times \mathfrak{usp}(2N) \) gauge algebra (at zero Chern-Simons levels) and n bifundamental half-hypermultiplets, analogous to ABJ-type models. As a distinct contribution, we improve the prescription, previously studied in the literature, for computing Coulomb branch Hilbert series of SO(N) gauge theories with Nf vector hypermultiplets. Our improved prescription extends these methods by incorporating fugacities for discrete zero-form symmetries — specifically charge conjugation and magnetic symmetries — and properly treating background magnetic fluxes for the flavour symmetry. This refinement enables calculations for various global forms (O(N)±, Spin(N), Pin(N)) and ensures consistency with the Coulomb branch limit of the superconformal index and known dualities. The proper treatment of fluxes is particularly essential for analysing orthosymplectic quivers where such a flavour symmetry is gauged. We verify our methods through several examples, including an analysis of the mapping of discrete symmetries under mirror symmetry for T[SO(N)] and T[USp(2N)] theories. The analysis also readily generalises to the Tρ[SO(N)] and Tρ[USp(2N)] theories associated with partition ρ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信