具有空间马尔可夫结构的非平衡稳态

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Frank Redig, Berend van Tol
{"title":"具有空间马尔可夫结构的非平衡稳态","authors":"Frank Redig,&nbsp;Berend van Tol","doi":"10.1007/s10955-025-03471-4","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the structure of non-equilibrium steady states (NESS) for a class of exactly solvable models in the setting of a chain with left and right reservoirs. Inspired by recent results on the harmonic model Large deviations and additivity principle for the open harmonic process, (2023), (JSP 191(1):10, 2024). we focus on models in which the NESS is a mixture of equilibrium product measures, and where the probability measure which describes the mixture has a spatial Markovian property. We completely characterize the structure of such mixture measures, and show that under natural scaling and translation invariance properties, the only possible mixture measures are coinciding with the Dirichlet process found in Carinci Gioia, Franceschini Chiara, Frassek Rouven, Giardinà Cristian, Redig Frank. Large deviations and additivity principle for the open harmonic process, (2023), in the context of the harmonic model.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03471-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-equilibrium Steady States with a Spatial Markov Structure\",\"authors\":\"Frank Redig,&nbsp;Berend van Tol\",\"doi\":\"10.1007/s10955-025-03471-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the structure of non-equilibrium steady states (NESS) for a class of exactly solvable models in the setting of a chain with left and right reservoirs. Inspired by recent results on the harmonic model Large deviations and additivity principle for the open harmonic process, (2023), (JSP 191(1):10, 2024). we focus on models in which the NESS is a mixture of equilibrium product measures, and where the probability measure which describes the mixture has a spatial Markovian property. We completely characterize the structure of such mixture measures, and show that under natural scaling and translation invariance properties, the only possible mixture measures are coinciding with the Dirichlet process found in Carinci Gioia, Franceschini Chiara, Frassek Rouven, Giardinà Cristian, Redig Frank. Large deviations and additivity principle for the open harmonic process, (2023), in the context of the harmonic model.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 7\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-025-03471-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03471-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03471-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有左右储层链的精确可解模型的非平衡稳态(NESS)结构。(2023), (JSP 191(1):10, 2024).基于开放谐波模型的大偏差和加性原理的启发我们关注的模型中,NESS是平衡积度量的混合物,其中描述混合物的概率度量具有空间马尔可夫性质。我们完整地描述了这种混合测度的结构,并表明在自然标度和平移不变性性质下,唯一可能的混合测度与Carinci Gioia, Franceschini Chiara, frasek Rouven, giardin Cristian, Redig Frank中发现的Dirichlet过程一致。开放谐波过程的大偏差和可加性原理,(2023),在谐波模型的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-equilibrium Steady States with a Spatial Markov Structure

We investigate the structure of non-equilibrium steady states (NESS) for a class of exactly solvable models in the setting of a chain with left and right reservoirs. Inspired by recent results on the harmonic model Large deviations and additivity principle for the open harmonic process, (2023), (JSP 191(1):10, 2024). we focus on models in which the NESS is a mixture of equilibrium product measures, and where the probability measure which describes the mixture has a spatial Markovian property. We completely characterize the structure of such mixture measures, and show that under natural scaling and translation invariance properties, the only possible mixture measures are coinciding with the Dirichlet process found in Carinci Gioia, Franceschini Chiara, Frassek Rouven, Giardinà Cristian, Redig Frank. Large deviations and additivity principle for the open harmonic process, (2023), in the context of the harmonic model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信