统计力学中的时间不可逆性

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dominique Levesque, Nicolas Sourlas
{"title":"统计力学中的时间不可逆性","authors":"Dominique Levesque,&nbsp;Nicolas Sourlas","doi":"10.1007/s10955-025-03467-0","DOIUrl":null,"url":null,"abstract":"<div><p>One of the important questions in statistical mechanics is how irreversibility (time’s arrow) occurs when Newton equations of motion are time reversal invariant. One objection to irreversibility is based on Poincaré’s recursion theorem: a classical Hamiltonian confined system returns after some time, so-called Poincaré recurrence time (PRT), close to its initial configuration. Boltzmann’s reply was that for a <span>\\(N \\sim 10^{23} \\)</span> macroscopic number of particles, PRT is very large and exceeds the age of the universe. In this paper we compute for the first time, using molecular dynamics, a typical recurrence time <i>T</i>(<i>N</i>) for a realistic case of a gas of <i>N</i> particles. We find that <span>\\(T(N) \\sim N^z \\exp (y N) \\)</span> and determine the exponents <i>y</i> and <i>z</i> for different values of the particle density and temperature. We also compute <i>y</i> analytically using Boltzmann’s hypotheses. We find an excellent agreement with the numerical results. This agreement validates Boltzmann’s hypotheses, not yet mathematically proven. We establish that <i>T</i>(<i>N</i>) exceeds the age of the Universe for a relatively small number of particles, much smaller than <span>\\( 10^{23} \\)</span>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Irreversibility in Statistical Mechanics\",\"authors\":\"Dominique Levesque,&nbsp;Nicolas Sourlas\",\"doi\":\"10.1007/s10955-025-03467-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the important questions in statistical mechanics is how irreversibility (time’s arrow) occurs when Newton equations of motion are time reversal invariant. One objection to irreversibility is based on Poincaré’s recursion theorem: a classical Hamiltonian confined system returns after some time, so-called Poincaré recurrence time (PRT), close to its initial configuration. Boltzmann’s reply was that for a <span>\\\\(N \\\\sim 10^{23} \\\\)</span> macroscopic number of particles, PRT is very large and exceeds the age of the universe. In this paper we compute for the first time, using molecular dynamics, a typical recurrence time <i>T</i>(<i>N</i>) for a realistic case of a gas of <i>N</i> particles. We find that <span>\\\\(T(N) \\\\sim N^z \\\\exp (y N) \\\\)</span> and determine the exponents <i>y</i> and <i>z</i> for different values of the particle density and temperature. We also compute <i>y</i> analytically using Boltzmann’s hypotheses. We find an excellent agreement with the numerical results. This agreement validates Boltzmann’s hypotheses, not yet mathematically proven. We establish that <i>T</i>(<i>N</i>) exceeds the age of the Universe for a relatively small number of particles, much smaller than <span>\\\\( 10^{23} \\\\)</span>.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 7\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03467-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03467-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

统计力学中的一个重要问题是,当牛顿运动方程是时间反转不变时,不可逆性(时间箭头)是如何发生的。一个反对不可逆性的理由是基于庞加莱的递归定理:一个经典的哈密顿受限系统经过一段时间,即所谓的庞加莱递归时间(PRT),返回到接近它的初始构型。玻尔兹曼的回答是,对于\(N \sim 10^{23} \)宏观粒子数来说,PRT非常大,超过了宇宙的年龄。本文首次用分子动力学方法计算了N个粒子气体的典型递归时间T(N)。我们找到了\(T(N) \sim N^z \exp (y N) \),并确定了不同粒子密度和温度值的指数y和z。我们也用玻尔兹曼的假设解析地计算y。结果与数值计算结果非常吻合。这种一致证实了玻尔兹曼的假设,而这些假设还没有被数学证明。我们确定T(N)超过宇宙年龄的粒子数量相对较少,远小于\( 10^{23} \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Time Irreversibility in Statistical Mechanics

Time Irreversibility in Statistical Mechanics

One of the important questions in statistical mechanics is how irreversibility (time’s arrow) occurs when Newton equations of motion are time reversal invariant. One objection to irreversibility is based on Poincaré’s recursion theorem: a classical Hamiltonian confined system returns after some time, so-called Poincaré recurrence time (PRT), close to its initial configuration. Boltzmann’s reply was that for a \(N \sim 10^{23} \) macroscopic number of particles, PRT is very large and exceeds the age of the universe. In this paper we compute for the first time, using molecular dynamics, a typical recurrence time T(N) for a realistic case of a gas of N particles. We find that \(T(N) \sim N^z \exp (y N) \) and determine the exponents y and z for different values of the particle density and temperature. We also compute y analytically using Boltzmann’s hypotheses. We find an excellent agreement with the numerical results. This agreement validates Boltzmann’s hypotheses, not yet mathematically proven. We establish that T(N) exceeds the age of the Universe for a relatively small number of particles, much smaller than \( 10^{23} \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信