Yingchun Niu, Xi Zeng, Junjun Xia, Liang Wang, Yao Liu, Zhuang Wang, Mengying Li, Kairan Chen, Wenjun Zhong, Quan Xu
{"title":"绿色制氢技术的最新进展","authors":"Yingchun Niu, Xi Zeng, Junjun Xia, Liang Wang, Yao Liu, Zhuang Wang, Mengying Li, Kairan Chen, Wenjun Zhong, Quan Xu","doi":"10.1007/s11705-025-2551-4","DOIUrl":null,"url":null,"abstract":"<div><p>Overuse of fossil fuels led to energy crises and pollution. Thus, alternative energy sources are needed. Hydrogen, with its clean and high-density traits, is seen as a future energy carrier. Producing hydrogen from electricity can store renewable energy for a sustainable hydrogen economy. While much research on water electrolysis hydrogen production systems exists, comprehensive reviews of engineering applications are scarce. This review sums up progress and improvement strategies of common water electrolysis technologies (alkaline water electrolysis, proton exchange membrane water electrolysis, solid oxide water electrolysis, and anion exchange membrane water electrolysis, etc.), including component and material research and development. It also reviews these technologies by development and maturity, especially their engineering applications, discussing features and prospects. Bottlenecks of different technologies are compared and analyzed, and future directions are summarized. The aim is to link academic material research with industrial manufacturing.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 10","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress of green hydrogen production technology\",\"authors\":\"Yingchun Niu, Xi Zeng, Junjun Xia, Liang Wang, Yao Liu, Zhuang Wang, Mengying Li, Kairan Chen, Wenjun Zhong, Quan Xu\",\"doi\":\"10.1007/s11705-025-2551-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Overuse of fossil fuels led to energy crises and pollution. Thus, alternative energy sources are needed. Hydrogen, with its clean and high-density traits, is seen as a future energy carrier. Producing hydrogen from electricity can store renewable energy for a sustainable hydrogen economy. While much research on water electrolysis hydrogen production systems exists, comprehensive reviews of engineering applications are scarce. This review sums up progress and improvement strategies of common water electrolysis technologies (alkaline water electrolysis, proton exchange membrane water electrolysis, solid oxide water electrolysis, and anion exchange membrane water electrolysis, etc.), including component and material research and development. It also reviews these technologies by development and maturity, especially their engineering applications, discussing features and prospects. Bottlenecks of different technologies are compared and analyzed, and future directions are summarized. The aim is to link academic material research with industrial manufacturing.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 10\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2551-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2551-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Recent progress of green hydrogen production technology
Overuse of fossil fuels led to energy crises and pollution. Thus, alternative energy sources are needed. Hydrogen, with its clean and high-density traits, is seen as a future energy carrier. Producing hydrogen from electricity can store renewable energy for a sustainable hydrogen economy. While much research on water electrolysis hydrogen production systems exists, comprehensive reviews of engineering applications are scarce. This review sums up progress and improvement strategies of common water electrolysis technologies (alkaline water electrolysis, proton exchange membrane water electrolysis, solid oxide water electrolysis, and anion exchange membrane water electrolysis, etc.), including component and material research and development. It also reviews these technologies by development and maturity, especially their engineering applications, discussing features and prospects. Bottlenecks of different technologies are compared and analyzed, and future directions are summarized. The aim is to link academic material research with industrial manufacturing.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.