周期多元BEKK-GARCH模型的几何遍历性与β-混合

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Farid Boussama, Hafida Guerbyenne, Khedidja Serier Abdallah
{"title":"周期多元BEKK-GARCH模型的几何遍历性与β-混合","authors":"Farid Boussama,&nbsp;Hafida Guerbyenne,&nbsp;Khedidja Serier Abdallah","doi":"10.1007/s10255-025-0012-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces the new class of periodic multivariate GARCH models in their periodic BEKK specification. Semi-polynomial Markov chains combined with algebraic geometry are used to obtain some properties like irreducibility. We impose weak conditions to obtain the strict periodic stationarity and the geometric ergodicity of the process, via the theory of positive linear operators on a cone: it is supposed that zero belongs to the support of the driving noise density which is absolutely continuous with respect to the Lebesgue measure and the spectral radius of a matrix built from the periodic coefficients of the model is smaller than one.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 3","pages":"876 - 897"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Ergodicity and β-mixing of the Periodic Multivariate BEKK-GARCH Model\",\"authors\":\"Farid Boussama,&nbsp;Hafida Guerbyenne,&nbsp;Khedidja Serier Abdallah\",\"doi\":\"10.1007/s10255-025-0012-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces the new class of periodic multivariate GARCH models in their periodic BEKK specification. Semi-polynomial Markov chains combined with algebraic geometry are used to obtain some properties like irreducibility. We impose weak conditions to obtain the strict periodic stationarity and the geometric ergodicity of the process, via the theory of positive linear operators on a cone: it is supposed that zero belongs to the support of the driving noise density which is absolutely continuous with respect to the Lebesgue measure and the spectral radius of a matrix built from the periodic coefficients of the model is smaller than one.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 3\",\"pages\":\"876 - 897\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0012-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0012-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一类新的周期多元GARCH模型的周期BEKK规范。将半多项式马尔可夫链与代数几何结合,得到了半多项式马尔可夫链的不可约性等性质。通过锥上的正线性算子理论,我们对过程的严格周期平稳性和几何遍历性施加了弱条件:假设零属于驱动噪声密度的支持,它相对于勒贝格测度是绝对连续的,并且由模型的周期系数建立的矩阵的谱半径小于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Ergodicity and β-mixing of the Periodic Multivariate BEKK-GARCH Model

This paper introduces the new class of periodic multivariate GARCH models in their periodic BEKK specification. Semi-polynomial Markov chains combined with algebraic geometry are used to obtain some properties like irreducibility. We impose weak conditions to obtain the strict periodic stationarity and the geometric ergodicity of the process, via the theory of positive linear operators on a cone: it is supposed that zero belongs to the support of the driving noise density which is absolutely continuous with respect to the Lebesgue measure and the spectral radius of a matrix built from the periodic coefficients of the model is smaller than one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信